
6/7/2010 1

Programming Languages and
Compilers (CS 421)

Munawar Hafiz

2219 SC, UIUC

http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha and Elsa Gunter

6/7/2010 2

Question

n Observation: Functions are first-class values
in OCaml

n Question: What value does the environment
record for a function variable?

n Answer: a closure

6/7/2010 3

Save the Environment!

n A closure is a pair of an environment and an

association of a sequence of variables (the

input variables) with an expression (the

function body), written:

f → < (v1,…,vn) → exp, ρf >

n Where ρf is the environment in effect when f

is defined (if f is a simple function)

6/7/2010 4

Closure for plus_x

n When plus_x was defined, had environment:

ρplus_x = {x → 12, …, y → 24, …}

n Closure for plus_x:

<y → y + x, ρplus_x >

n Environment just after plus_x defined:

{plus_x → <y → y + x, ρplus_x >} + ρplus_x

6/7/2010 5

Evaluation of Application with Closures

n Evaluate the left term to a closure,
c = <x1,…,xn → b, ρ>

n Evaluate the right term to a value, v

n Remove left-most formal parameter, x1,
from c

n Update the environment ρ to ρ’ = x1 → v + ρ

n If n>1 (more formal params) return c’ =
<x2,…,xn → b, ρ’>

n If n=1 (no more formal params), evaluate
body b in environment ρ’

6/7/2010 6

Evaluation: Application of plus_x;;

n Have environment:

ρ = {plus_x → <y → y + x, ρplus_x >, … ,

y → 3, …}

where ρplus_x = {x → 12, … , y → 24, …}

n Eval (plus_x y, ρ) rewrites to

n Eval (app <y → y + x, ρplus_x > 3, ρ)
rewrites to

n Eval (y + x, {y → 3} + ρplus_x) rewrites to

n Eval (3 + 12, {y → 3} + ρplus_x) = 15

6/7/2010 7

Curried vs Uncurried

n Recall

val add_three : int -> int -> int -> int = <fun>

n How does it differ from

let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

n add_three is curried;

n add_triple is uncurried

6/7/2010 8

Curried vs Uncurried

add_triple (6,3,2);;

- : int = 11

add_triple 5 4;;

Characters 0-10:

add_triple 5 4;;

^^^^^^^^^^

This function is applied to too many arguments,

maybe you forgot a `;'

fun x -> add_triple (5,4,x);;

: int -> int = <fun>

6/7/2010 9

•Each clause: pattern on
left, expression on right

•Each x, y has scope of
only its clause

•Use first matching clause

Match Expressions

let triple_to_pair triple =

match triple

with (0, x, y) -> (x, y)

| (x, 0, y) -> (x, y)

| (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int =

<fun>

6/7/2010 10

Lists

n First example of a recursive datatype (aka
algebraic datatype)

n Unlike tuples, lists are homogeneous in
type (all elements same type)

6/7/2010 11

Lists

n List can take one of two forms:

n Empty list, written []

n Non-empty list, written x :: xs

n x is head element, xs is tail list, :: called

“cons”

n Syntactic sugar: [x] == x :: []

n [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

6/7/2010 12

Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;
1]

6/7/2010 13

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:

let bad_list = [1; 3.2; 7];;

^^^

This expression has type float but is here
used with type int

6/7/2010 14

Question

n Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

6/7/2010 15

Answer

n Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§ 3 is invalid because of last pair

6/7/2010 16

Functions Over Lists

let rec double_up list =

match list

with [] -> [] (* pattern before ->,

expression after *)

| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;

val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;
1; 1; 1]

6/7/2010 17

Scratch Pad

6/7/2010 18

Functions Over Lists

let silly = double_up ["hi"; "there"];;

val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =

match list

with [] -> []

| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

6/7/2010 19

Scratch Pad

6/7/2010 20

Functions Over Lists

let rec map f list =

match list

with [] -> []

| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

: int list = [12; 7; 4; 2; 1; 0; 0]

6/7/2010 21

Iterating over lists

let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()

6/7/2010 22

Scratch Pad

6/7/2010 23

Iterating over lists

let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

6/7/2010 24

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
| n -> (2 * n -1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

6/7/2010 25

Recursion and Induction

let rec nthsq n = match n with 0 -> 0

| n -> (2 * n - 1) + nthsq (n - 1) ;;

n Base case is the last case; it stops the computation

n Recursive call must be to arguments that are
somehow smaller - must progress to base case

n if or match must contain base case

n Failure of these may cause failure of termination

6/7/2010 26

Structural Recursion

n Functions on recursive datatypes (eg lists)
tend to be recursive

n Recursion over recursive datatypes generally
by structural recursion

n Recursive calls made to components of structure
of the same recursive type

n Base cases of recursive types stop the recursion
of the function

6/7/2010 27

Structural Recursion : List Example

let rec length list = match list

with [] -> 0 (* Nil case *)

| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

- : int = 4

n Nil case [] is base case

n Cons case recurses on component list xs

6/7/2010 28

Forward Recursion

n In structural recursion, you split your input
into components

n In forward recursion, you first call the
function recursively on all the recursive
components, and then build the final result
from the partial results

n Wait until the whole structure has been
traversed to start building the answer

6/7/2010 29

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

6/7/2010 30

Mapping Recursion

n One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list

with [] -> []

| x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

6/7/2010 31

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =

List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

n Same function, but no rec

6/7/2010 32

Folding Recursion

n Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list

with [] -> 1

| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

n Computes (2 * (4 * (6 * 1)))

6/7/2010 33

Folding Recursion

n multList folds to the right

n Same as:

let multList list =

List.fold_right

(fun x -> fun p -> x * p)

list 1;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

6/7/2010 34

How long will it take?

n Remember the big-O notation from CS 225
and CS 273

n Question: given input of size n, how long to
generate output?

n Express output time in terms of input size,
omit constants and take biggest power

6/7/2010 35

How long will it take?

Common big-O times:

n Constant time O (1)

n input size doesn’t matter

n Linear time O (n)

n double input ⇒ double time

n Quadratic time O (n2)

n double input ⇒ quadruple time

n Exponential time O (2n)

n increment input ⇒ double time

6/7/2010 36

Linear Time

n Expect most list operations to take
linear time O (n)

n Each step of the recursion can be done
in constant time

n Each step makes only one recursive call

n List example: multList, append

n Integer example: factorial

6/7/2010 37

Quadratic Time

n Each step of the recursion takes time
proportional to input

n Each step of the recursion makes only one
recursive call.

n List example:

let rec poor_rev list = match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

6/7/2010 38

Exponential running time

n Hideous running times on input of any size

n Each step of recursion takes constant time

n Each recursion makes two recursive calls

n Easy to write naïve code that is exponential

for functions that can be linear

6/7/2010 39

Exponential running time

let rec naiveFib n = match n

with 0 -> 0

| 1 -> 1

| _ -> naiveFib (n-1) + naiveFib (n-2);;

val naiveFib : int -> int = <fun>

6/7/2010 40

Normal
call

h

g

f

…

An Important Optimization

n When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

6/7/2010 41

Tail
call

h

f

…

An Important Optimization

n When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

n Then h can return directly to f
instead of g

6/7/2010 42

Tail Recursion

n A recursive program is tail recursive if all
recursive calls are tail calls

n Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n Tail recursion generally requires extra
“accumulator” arguments to pass partial
results

n May require an auxiliary function

6/7/2010 43

Tail Recursion - Example

let rec rev_aux list revlist =

match list with [] -> revlist

| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

n What is its running time?

6/7/2010 44

Comparison

n poor_rev [1,2,3] =

n (poor_rev [2,3]) @ [1] =

n ((poor_rev [3]) @ [2]) @ [1] =

n (((poor_rev []) @ [3]) @ [2]) @ [1] =

n (([] @ [3]) @ [2]) @ [1]) =

n ([3] @ [2]) @ [1] =

n (3:: ([] @ [2])) @ [1] =

n [3,2] @ [1] =

n 3 :: ([2] @ [1]) =

n 3 :: (2:: ([] @ [1])) = [3, 2, 1]

6/7/2010 45

Comparison

n rev [1,2,3] =

n rev_aux [1,2,3] [] =

n rev_aux [2,3] [1] =

n rev_aux [3] [2,1] =

n rev_aux [] [3,2,1] = [3,2,1]

