Programming Languages and Compilers (CS 421)

Munawar Hafiz 2219 SC, UIUC

 http://www.cs.uiuc.edu/class/cs421/Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha and Elsa Gunter

Question

n Observation: Functions are first-class values in OCaml
${ }_{n}$ Question: What value does the environment record for a function variable?
n Answer: a closure

Save the Environment!

${ }_{n}$ A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

$$
\left.\mathrm{f} \rightarrow<(\mathrm{v} 1, \ldots, \mathrm{vn}) \rightarrow \exp , \rho_{\mathrm{f}}\right\rangle
$$

${ }_{n}$ Where ρ_{f} is the environment in effect when f is defined (if f is a simple function)

Closure for plus_x

n When plus_x was defined, had environment:

$$
\rho_{\text {plus_ }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}
$$

${ }_{n}$ Closure for plus_x:

$$
\left\langle y \rightarrow y+x, \rho_{\text {plus_x }}>\right.
$$

n Environment just after plus_ x defined:
$\left\{\right.$ plus_ $x \rightarrow\left\langle y \rightarrow y+x, \rho_{\text {plus_ }}>\right\}+\rho_{\text {plus_ }}$

Evaluation of Application with Closures

${ }_{n}$ Evaluate the left term to a closure, $\mathrm{c}=\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{b}, \mathrm{p}\right\rangle$
${ }^{n}$ Evaluate the right term to a value, v
${ }_{n}$ Remove left-most formal parameter, x_{1}, from c
n Update the environment ρ to $\rho^{\prime}=x_{1} \rightarrow v+\rho$
n If $\mathrm{n}>1$ (more formal params) return $\mathrm{c}^{\prime}=$ $<x_{2}, \ldots, x_{n} \rightarrow b, \rho^{\prime}>$
n If $n=1$ (no more formal params), evaluate body b in environment ρ^{\prime}

Evaluation: Application of plus_x; ;

n Have environment:

$$
\begin{gathered}
\rho=\left\{\text { plus_ }^{x} \rightarrow<y \rightarrow y+x, \rho_{\text {plus_ }}>, \ldots,\right. \\
y \rightarrow 3, \ldots\}
\end{gathered}
$$

where $\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}$
${ }^{n}$ Eval (plus_ $\bar{x} y, \rho$) rewrites to
n Eval (app $<y \rightarrow y+x, \rho_{\text {plus_x }}>3, \rho$) rewrites to
${ }_{n}$ Eval $\left(y+x,\{y \rightarrow 3\}+\rho_{\text {plus_x }}\right)$ rewrites to
${ }^{n} \operatorname{Eval}\left(3+12,\{y \rightarrow 3\}+\rho_{\text {plus_x }}\right)=15$

Curried vs Uncurried

n Recall
val add_three : int -> int -> int -> int = <fun>
${ }_{n}$ How does it differ from
\# let add_triple $(u, v, w)=u+v+w ;$;
val add_triple : int * int * int -> int = <fun>
n add_three is curried;
n add_triple is uncurried

Curried vs Uncurried

\＃add＿triple（6，3，2）；；
－：int＝ 11
\＃add＿triple 5 4；；
Characters 0－10：
add＿triple 5 4；；
ヘヘヘヘヘヘヘヘヘヘ
This function is applied to too many arguments， maybe you forgot a｀；＇
\＃fun x－＞add＿triple（ $5,4, \mathrm{x}$ ）；；
：int－＞int＝＜fun＞

Match Expressions

\# let triple_to_pair triple =
match triple
with $(0, x, y)->(x, y)$
| ($\mathrm{x}, 0, \mathrm{y}$) -> (x, y)
($x, y,{ }_{2}$) -> (x, y); ;
val triple_to_pair : int * int * int -> int * int = <fun>

Lists

${ }_{n}$ First example of a recursive datatype (aka algebraic datatype)
n Unlike tuples, lists are homogeneous in type (all elements same type)

Lists

n List can take one of two forms:
n Empty list, written []
n Non-empty list, written x :: xs
${ }_{n} \mathrm{X}$ is head element, xs is tail list, :: called "cons"
n Syntactic sugar: [x] == x :: []
n [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = 8 ; $5 ; 3 ; 2 ; 1 ; 1]$
\# let fib6 = 13 : : fib5;;
val fib6 : int list = $13 ; 8 ; 5 ; 3 ; 2 ; 1 ; 1]$
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = 8 ; $5 ; 3 ; 2 ; 1 ; 1 ; 13 ; 8 ; 5 ; 3 ; 2 ; 1$; 1]

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：

$$
\begin{aligned}
& \text { let bad_list = [1; 3.2; 7];; } \\
& \text { ヘヘヘ }
\end{aligned}
$$

This expression has type float but is here used with type int

Question

n Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

n Which one of these lists is invalid?

1. $[2 ; 3 ; 4 ; 6]$
2. $[2,3 ; 4,5 ; 6,7]$
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

B 3 is invalid because of last pair

Functions Over Lists

\# let rec double_up list = match list with [] -> [] (* pattern before ->, expression after *)
| (x::xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun> \# let fib5_2 = double_up fib5;;
val fib5_2 : int list = $18 ; 8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1$; $1 ; 1 ; \overline{1}]$

Scratch Pad

Functions Over Lists

\# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"] \# let rec poor_rev list =
match list
with [] -> []
(x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun> \# poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Scratch Pad

Functions Over Lists

\# let rec map flist =
match list
with [] -> []
| (h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x-> x-1) fib6;;
: int list = $12 ; 7 ; 4 ; 2 ; 1 ; 0 ; 0]$

Iterating over lists

\# let rec fold_left falist =
match list
with [] -> a
| (x : : xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

Scratch Pad

Iterating over lists

\# let rec fold_right f list b =
match list
with [] -> b
| (x:: xs) -> fx (fold_right f xs b);;
val fold_right: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
(); ;
therehi- : unit =()

Recursion Example

```
Compute n}\mp@subsup{n}{}{2}\mathrm{ recursively using:
                n
# let rec nthsq n = (* rec for recursion *)
        match n
        with 0 -> 0
            n-> (2 * n-1) (* recursive case *)
                + nthsq (n-1);; (* recursive call *)
val nthsq : int -> int = <fun>
# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ; ;
$$

n Base case is the last case; it stops the computation
n Recursive call must be to arguments that are somehow smaller - must progress to base case
n if or match must contain base case
n Failure of these may cause failure of termination

Structural Recursion

n Functions on recursive datatypes (eg lists) tend to be recursive
${ }_{n}$ Recursion over recursive datatypes generally by structural recursion
${ }^{n}$ Recursive calls made to components of structure of the same recursive type
n Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

\# let rec length list = match list
with [] -> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
n Nil case [] is base case
${ }_{n}$ Cons case recurses on component list xs

Forward Recursion

n In structural recursion, you split your input into components
n In forward recursion, you first call the function recursively on all the recursive components, and then build the final result from the partial results
${ }_{n}$ Wait until the whole structure has been traversed to start building the answer

Forward Recursion: Examples

\# let rec double_up list = match list with [] -> []
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Mapping Recursion

One common form of structural recursion applies a function to each element in the structure
\# let rec doubleList list = match list with [] -> []
| x::xs -> 2 * x:: doubleList xs;;
val doubleList : int list $->$ int list $=<$ fun $>$
\# doubleList [2;3;4];;

- : int list = [4; 6; 8]

Mapping Recursion

n Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;

- : int list = [4; 6; 8]
n Same function, but no rec

Folding Recursion

n Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x* multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;

- : int = 48
${ }^{n}$ Computes (2 * (4 * (6 * 1)))

Folding Recursion

n multList folds to the right
n Same as:
\# let multList list =
List.fold_right
(fun $x->$ fun $p->x * p$)
list 1 ;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;

- : int = 48

How long will it take?

n Remember the big-O notation from CS 225 and CS 273
${ }_{n}$ Question: given input of size n, how long to generate output?
${ }_{n}$ Express output time in terms of input size, omit constants and take biggest power

How long will it take?

Common big-O times:
${ }_{n}$ Constant time O (1)
${ }^{n}$ input size doesn't matter
n Linear time $O(n)$
${ }_{n}$ double input \Rightarrow double time
n Quadratic time $O\left(n^{2}\right)$
${ }_{n}$ double input \Rightarrow quadruple time
${ }^{n}$ Exponential time $O\left(2^{n}\right)$
n increment input \Rightarrow double time

Linear Time

n Expect most list operations to take linear time $O(n)$
n Each step of the recursion can be done in constant time
n Each step makes only one recursive call
n List example: multList, append
n Integer example: factorial

Quadratic Time

n Each step of the recursion takes time proportional to input
n Each step of the recursion makes only one recursive call.
n List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Exponential running time

${ }_{n}$ Hideous running times on input of any size
${ }_{n}$ Each step of recursion takes constant time
n Each recursion makes two recursive calls
${ }_{n}$ Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

\# let rec naiveFib $\mathrm{n}=$ match n

$$
\text { with } 0->0
$$

$$
\text { | } 1 \text {-> } 1
$$

$$
\text { | _ -> naiveFib }(n-1)+\text { naiveFib }(n-2) ; ;
$$

val naiveFib : int -> int = <fun>

An Important Optimization

${ }_{n}$ When a function call is made,
Normal call
 the return address needs to be saved to the stack so we know to where to return when the call is finished
${ }_{n}$ What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?

An Important Optimization

${ }_{n}$ When a function call is made,
Tail call
 the return address needs to be saved to the stack so we know to where to return when the call is finished
${ }^{n}$ What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
n Then h can return directly to f instead of g

Tail Recursion

${ }_{n}$ A recursive program is tail recursive if all recursive calls are tail calls
n Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
n Tail recursion generally requires extra "accumulator" arguments to pass partial results
${ }^{n}$ May require an auxiliary function

Tail Recursion - Example

\# let rec rev_aux list revlist = match list with [] -> revlist
| x:: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>
${ }_{\mathrm{n}}$ What is its running time?

Comparison

n poor_rev [1,2,3] =
n (poor_rev [2,3]) @ [1] =
n ((poor_rev [3]) @ [2]) @ [1] =
n (((poor_rev []) @ [3]) @ [2]) @ [1] =
n (([] @ [3]) @ [2]) @ [1]) =
n ([3] @ [2]) @ [1] =
n (3:: ([] @ [2])) @ [1] =
n [3,2] @ [1] =
n 3 :: ([2] @ [1]) =
n 3 :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

n $\operatorname{rev}[1,2,3]=$
n rev_aux [1,2,3] [] =
n rev_aux $[2,3][1]=$
n rev_aux [3] [2,1] =
n rev_aux [] [3,2,1] = [3,2,1]

