
05/31/10 1

Programming Languages and 
Compilers (CS 421) 

Munawar Hafiz

2219 SC, UIUC

http://www.cs.illinois.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated 
by Vikram Adve,  Gul Agha, and Elsa Gunter



05/31/10 2

Contact Information – Munawar Hafiz

n Office: 2219 SC

n Office hours:

n Mondays  12:45pm – 1:30pm

n Thursdays 3:30pm – 4:30pm

n Also by appointment

n Email: munawar.hafiz@gmail.com

n mhafiz@uiuc.edu



05/31/10 3

Contact Information - TAs

n Teaching Assistants Office: 0209 SC

n Reza Zamani

n Email: zamani@uiuc.edu 

n Hours: 

n Tuesdays 12:45pm – 1:45pm

n Wednesdays 4pm – 5pm



05/31/10 4

Course Website

n Main page - summary of news items

n Policy - rules governing course

n Lectures - syllabus and slides

n MPs - information about homework

n Exams

n Unit Projects - for 4 credit students

n Resources - tools and helpful info

n FAQ



05/31/10 5

Some Course References

n No required textbook.

n Essentials of Programming Languages (2nd Edition) 
by Daniel P. Friedman, Mitchell Wand and 
Christopher T. Haynes, MIT Press 2001.

n Compilers: Principles, Techniques, and Tools, (also 
known as "The Dragon Book"); by Aho, Sethi, and 
Ullman. Published by Addison-Wesley. ISBN: 0-
201-10088-6.

n Modern Compiler Implementation in ML by Andrew 
W. Appel, Cambridge University Press 1998

n Additional ones for Ocaml given separately



05/31/10 6

Course Grading

n Homework 25% 
n About 7 MPs (in Ocaml) and 1 written assignment

n MPs submitted by handin on EWS linux machines

n HWs turned in in class

n Late submission penalty: 20% of assignments total value

n 2 Midterms - 20% each
n In class – Jun 28, Jul 15

n DO NOT MISS EXAM DATES!

n Final 35% - Friday, Aug 6, 1 pm.



05/31/10 7

Course Homework

n You may discuss homeworks and their solutions 
with others

n You may work in groups, but you must list 
members with whom you worked if you share 
solutions

n Each student must turn in their own solution 
separately

n You may look at examples from class and other 
similar examples from any source
n Note: University policy on plagiarism still holds - cite your 

sources if you are not the sole author of your solution

n Problems from homework may appear verbatim, or 
with some modification on exams



05/31/10 8

Course Objectives

n New programming paradigm
n Functional programming

n Tail Recursion

n Continuation Passing Style

n Phases of an interpreter / compiler
n Lexing and parsing

n Type checking

n Evaluation

n Programming Language Semantics
n Lambda Calculus

n Operational Semantics



05/31/10 9

OCAML

n Compiler is on the EWS-linux systems at

n /usr/local/bin/ocaml

n A (possibly better, non-PowerPoint) text 
version of this lecture can be found at

n http://www.cs.illinois.edu/class/cs421/lectur
es/ocaml-intro-shell.txt

n For the OCAML code for today’s lecture see

n http://www.cs.illinois.edu/class/cs421/lectur
es/ocaml-intro.ml



05/31/10 10

WWW Addresses for OCAML

n Main CAML home: 
http://caml.inria.fr/index.en.html

n To install OCAML on your computer see: 

n http://caml.inria.fr/ocaml/release.en.html



05/31/10 11

References for CAML

n Supplemental texts (not required):

n The Objective Caml system release 3.09, by 
Xavier Leroy, online manual

n Introduction to the Objective Caml 
Programming Language, by Jason Hickey

n Developing Applications With Objective 
Caml, by Emmanuel Chailloux, Pascal 
Manoury, and Bruno Pagano, on O’Reilly
n Available online from course resources



05/31/10 12

OCAML

n CAML is European descendant of original ML
n American/British version is SML

n O is for object-oriented extension

n ML stands for Meta-Language

n ML family designed for implementing 
theorem provers
n It was the meta-language for programming the 

“object” language of the theorem prover

n Despite obscure original application area, OCAML 
is a full general-purpose programming language



05/31/10 13

Features of OCAML

n Higher order applicative language

n Call-by-value parameter passing

n Modern syntax

n Parametric polymorphism

n Aka structural polymorphism

n Automatic garbage collection

n User-defined algebraic data types

n It’s fast - winners of the 1999 and 2000 ICFP 
Programming Contests used OCAML



Scratch Pad

05/31/10



05/31/10 15

Why learn OCAML?

n Many features not clearly in languages you 
have already learned

n Assumed basis for much research in 
programming language research

n OCAML is particularly efficient for 
programming tasks involving languages (eg 
parsing, compilers, user interfaces) 

n Used at Microsoft  for writing SLAM, a formal 
methods tool for C programs



05/31/10 16

Session in OCAML

% ocaml

Objective Caml version 3.11.1

# (* Read-eval-print loop; expressions and 
declarations *) 

2 + 3;; (* Expression *) 

- : int = 5

# let test = 3 < 2;;       (* Declaration *) 

val test : bool = false



05/31/10 17

Environments

n Environments record what value is associated with 
a given variable

n Central to the semantics and implementation of a 
language

n Notation

ρ = {name1 → value1, name2→ value2, …}

Using set notation, but describes a partial function

n Often stored as list, or stack

n To find value start from left and take first match



05/31/10 18

Sequencing

# "Hi there";; (* has type string *) 

- : string = "Hi there"

# print_string "Hello world\n";; (* has type unit *) 

Hello world

- : unit = () 

# (print_string "Bye\n"; 25);;  (* Sequence of exp *) 

Bye

- : int = 25

# let a = 3 let b = a + 2;; (* Sequence of dec *) 

val a : int = 3

val b : int = 5



05/31/10 19

Global Variable Creation

# 2 + 3;;     (* Expression *) 

// doesn’t effect the environment

# let test = 3 < 2;;       (* Declaration *) 

val test : bool = false

//  ρ = {test → false}

# let a = 3 let b = a + 2;; (* Sequence of dec 
*) 

//  ρ = {b → 5, a → 3, test → false}



05/31/10 20

# let b = 5 * 4 in 2 * b;;

- : int = 40

# let c =

let b = a + a

in b * b;;

val c : int = 36

# b;;

- : int = 5

Local let binding

//  ρ = {b → 5, a → 3, test → false}

//  ρ = {c  → 36, b → 5, a → 3, test → false}



05/31/10 21

# let c =

let b = a + a

in b * b;;

val c : int = 36

# b;;

- : int = 5

Local Variable Creation

//  ρ1 = {b → 5, a → 3, test → false}

//  ρ = {c  → 36, b → 5, a → 3, test → false}



05/31/10 22

Terminology

n Output refers both to the result returned 
from a function application 
n As in + outputs integers, whereas +. outputs 

floats

n Also refers to text printed as a side-effect of 
a computation
n As in print_string “\n” outputs a carriage return

n In terms of values, it outputs ( ) (“unit”) 

n Typically, we will use “output” to refer to the 
value returned



05/31/10 23

No Overloading for Basic Arithmetic Operations

# let x = 5 + 7;;
val x : int = 12

# let y = x * 2;;
val y : int = 24

# let z = 1.35 + 0.23;;  (* Wrong type of addition *) 
Characters 8-12:
let z = 1.35 + 0.23;;  (* Wrong type of addition *) 

^^^^
This expression has type float but is here used with type int

# let z = 1.35 +. 0.23;;
val z : float = 1.58



05/31/10 24

No Implicit Coercion

# let u = 1.0 + 2;;
Characters 8-11:
let u = 1.0 + 2;;

^^^
This expression has type float but is here used with 

type int
# let w = y + z;;
Characters 12-13:
let w = y + z;;

^
This expression has type float but is here used with 

type int



05/31/10 25

Booleans (aka Truth Values) 

# true;;

- : bool = true

# false;;

- : bool = false

# if y > x then 25 else 0;;

- : int = 25



05/31/10 26

Booleans

# 3 > 1 && 4 > 6;;

- : bool = false

# 3 > 1 || 4 > 6;;

- : bool = true

# (print_string "Hi\n"; 3 > 1) || 4 > 6;;

Hi

- : bool = true

# 3 > 1 || (print_string "Bye\n"; 4 > 6);;

- : bool = true

# not (4 > 6);;

- : bool = true



05/31/10 27

Functions

# let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

- : int = 19

# let plus_two = fun n -> n + 2;;

val plus_two : int -> int = <fun>

# plus_two 14;;

- : int = 16

First definition syntactic sugar for second



05/31/10 28

Using a nameless function

# (fun x -> x * 3) 5;;   (* An application *) 

- : int = 15

# ((fun y -> y +. 2.0), (fun z -> z * 3));;      
(* As data *) 

- : (float -> float) * (int -> int) = (<fun>, 
<fun>) 

Note: in fun v -> exp(v), scope of variable is 
only the body exp(v) 



05/31/10 29

Values fixed at declaration time

# let x = 12;;

val x : int = 12

# let plus_x y = y + x;;

val plus_x : int -> int = <fun>

# plus_x 3;;

What is the result?



05/31/10 30

Values fixed at declaration time

# let x = 12;;

val x : int = 12

# let plus_x y = y + x;;

val plus_x : int -> int = <fun>

# plus_x 3;;

- : int = 15



05/31/10 31

Values fixed at declaration time

# let x = 7;;   (* New declaration, not an 
update *) 

val x : int = 7

# plus_x 3;;

What is the result this time?



05/31/10 32

Values fixed at declaration time

# let x = 7;;   (* New declaration, not an 
update *) 

val x : int = 7

# plus_x 3;;

- : int = 15



05/31/10 33

Functions with more than one argument

# let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = 
<fun>

# let t = add_three 6 3 2;;

val t : int = 11



05/31/10 34

Partial application of functions

let add_three x y z = x + y + z;;

# let h = add_three 5 4;;

val h : int -> int = <fun>

# h 3;;

- : int = 12

# h 7;;

- : int = 16



05/31/10 35

Functions as arguments

# let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

# let g = thrice plus_two;;

val g : int -> int = <fun>

# g 4;;

- : int = 10

# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;

- : string = "Hi! Hi! Hi! Good-bye!"



05/31/10 36

Question

n Observation: Functions are first-class values 
in this language

n Question: What value does the environment 
record for a function variable?

n Answer: a closure



05/31/10 37

Save the Environment!

n A closure is a pair of an environment and an 

association of a sequence of variables (the 

input variables) with an expression (the 

function body), written:

f → < (v1,…,vn) → exp, ρf >

n Where ρf is the environment in effect when f 

is defined (if f is a simple function) 



05/31/10 38

Closure for plus_x

n When plus_x was defined, had environment:

ρplus_x = {x → 12, …, y → 24, …}

n Closure for plus_x:

<y → y + x, ρplus_x >

n Environment just after plus_x defined:

{plus_x → <y → y + x, ρplus_x >} + ρplus_x



05/31/10 39

Evaluation of Application

n First evaluate the left term to a function (ie 
starts with fun ) 

n Evaluate the right term (argument)  to a 
value
n Things starting with  fun are values

n Substitute the argument for the formal 
parameter in the body of the function

n Evaluate resulting term

n (Need to use environments) 



05/31/10 40

Evaluation Application of plus_x;;

n Have environment:

ρ = {plus_x → <y → y + x, ρplus_x >, … ,

y → 3, …}

where ρplus_x  = {x → 12, … , y → 24, …}

n Eval (plus_x y, ρ) rewrites to

n Eval (app <y → y + x, ρplus_x > 3, ρ)
rewrites to

n Eval (3 + x, ρplus_x ) rewrites to

n Eval (3 + 12 , ρplus_x ) = 15



05/31/10 41

Consider this code: 

let x = 27;;
let f x =

let x = 5 in
(fun x -> print_int x) 10;;

f 12;;

What value is printed?
5
10
12
27

Scoping Question



05/31/10 42

Recursive Functions

# let rec factorial n =

if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>

# factorial 5;;

- : int = 120

# (* rec  is needed for recursive function 
declarations *) 

(* More on this later *) 


