CS 421 Midterm 2 Name: Page 1

CS421 Spring 2009 Final

Monday, May11, 2009

Name:

NetID:

e You have 180 minutes to complete this exam.
e This is a closed-book exam.

e Do not share anything with other students. Do not talk to other students. Do not look at
another student’s exam. Do not expose your exam to easy viewing by other students.

e If you believe there is an error, or an ambiguous question, seek clarification from one of the TAs.
e Including this cover sheet, there are 16 pages to the exam. Please verify that you have all pages.

e Please write your name and NetID in the spaces above, and at the top of every page.

Question Possible points Points earned EC points
1 10

2 8

3 8

4 12 + 4EC
5 8

6 8

7 6

8 6

9 4

10 12

11 10

12 8 +4EC
Total 100 + 8EC

CS 421 Midterm 2 Name: Page 2

1. (10 pts) Define the following OCaml functions:

(a) maxmin:int list -> int * int returns a pair of the largest number and the smallest number in a list. E.g.
maxmin[1;5;4;2;6;3;8;7;2;9] = (9,1). You may not use any library function except hd and tl; you may
assume that the argument is a non-empty list.

(b) remove: a -> a. list -> a list removes all occurrences of an element from a list. remove 5
[1;3;5;6;5;8] = [1,3;6,8].

(c) The higher-order function removeAll has type (a -> bool) -> a list -> a list; removeAll p | removes all
the elements of | that satisfy p.

(d) Now use removeAll to define remove:

remove x lis = removeAll () lis

(e) Suppose you want to remove only the first element of a list that satisfies a predicate. Define
removeFirst: (o -> bool) -> a. list -> a list such that if you apply removeFirst instead of removeAll in
problem (d) it would remove just the first occurrence of x.

CS 421 Midterm 2 Name: Page 3

2. (8 pts) We can define an extremely simple set of expressions with this grammar:
Exp -> int | variable | Exp+Exp | Exp * Exp

where an int is a sequence of one or more decimal digits, and a variable is a sequence of one or more
lower-case letters.

(a) This set of expressions can also be defined by a single regular expression. Write this regular
expression in ocamllex style:

(b) Write a DFA for this set of expressions. Label the start state with S, accepting states with A, and
rejecting states with R.

(c) If we were to parse these expressions in ocamlyacc, we would want to use ocamllex to divide the
input into tokens, the tokens being: int, identifier, +, and *. Fill in this ocamllex specification to do that:

type token = INTEGER_LITERAL of int | PLUS | TIMES | IDENTIFIER of string
let letter = [‘a’ - ‘2]

let digit =

let letters =

let digits =

rule tokenize = parse

| letters as s {

CS 421 Midterm 2 Name: Page 4

3. (8 pts) We gave a number of translation schemes for translating ASTs to intermediate form in class.

For this question, you will need to remember two of them:

[ely : translate expression e to code that stores value of e in variable x

[eli.is : translate expression e to code that branches to Lt if e is true, or Lf otherwise

Suppose a language has logical connectives “nand” and “nor.” In this question, we will explore several

translation schemes for these operators. First, we remind you of some translations for other operators:

[el && e2], =
let L1, L2, L3, L4 = newlabel() [el && e2]ys =
y, z = newlocation() L1:

in [el],
CIUMP y,L1,12 [el || e2]uus=

L1: [e2], L1:
CIUMP z,L3,L2 el =

L3: X = true
JUMP L4

L2: x = false

L4:

(a) Fill in the lines in these definitions (in each case, the solution we want is two lines long):

[e1 nand e2] s [(el && e2)]i.s

(el || e2)]uus

[el nor e2] ¢

[e1]iaif
[e2] it

[el]i i
[e2]Lt,Lf

[e]Lf,Lt

(b) Give this translation (analogous to [el && e2], above; the solution is exactly as long as that scheme):

[e1 nand e2], =

CS 421 Midterm 2 Name: Page 5

4. (12 pts) This is an abstract syntax for “lambda calculus” — a very simplified OCaml:

type lambda = Var of string (* Var x corresponds to variable x *)
| Fun of string * lambda (* Fun(x,e) corresponds to fun x -> e *)
| App of lambda * lambda (* App(el,e2) corresponds to el e2 *)

| Let of string * lambda * lambda; (* Let(x,el,e2) corresponds to let x=el in e2 *)

For example, “fun x -> let y=x in x z” would correspond to AST: Fun(“x”, Let(“y”, Var “x”, App(Var “x”, Var

2).

(a) Write a function that transforms each occurrence of a Let expression to the application of an
abstraction (“let x=el in e2” -> “(fun x->e2)e1”). It must transform every such occurrence, including
ones that occur inside other occurrences. For example:

removelets (Fun(“x”, Let(“y”, Var “x”, App(Var “x”, Var “z”))))
= Fun ("x", App (Fun ("y", App (Var "x", Var "z")), Var "x"))

let rec removelets e = match e with

(b) (For this and the following questions, ignore “Let” expressions — just pretend they are not included in
the type lambda. This is just to make the answers shorter.)

The function reduce will act like “fold” for lambdas. It is defined by:

let rec reduce f g h e = match e with
Vars->fs
| Fun(s,e) ->gs (reducefghe)
| App(e,e') -> h (reduce fghe) (reducefghe’)

Give the (somewhat lengthy) type of reduce (including quantified type variables, if appropriate):

CS 421 Midterm 2 Name: Page 6

(c) Use reduce to define the function freevars: lambda -> string list, which returns all variables occurring
free (i.e. not within the scope of a Fun) in its argument; it is okay if it includes a given variable multiple
times. (Hint: You will probably want to use the function remove, defined in question 1.)

(d) (4 EC pts) A simpler higher-order function operating on lambdas is mapLam, which applies a
function just to the strings that occur in an expression, and returns an AST of the same shape as its
argument. This is analogous to map on lists. E.g.

maplLam (fun s ->sA”2”) (Fun ("x", App (Fun ("y", App (Var "x", Var "z")), Var "x")));;
= Fun ("x2", App (Fun ("y2", App (Var "x2", Var "z2")), Var "x2"));

Define mapLam using reduce.

CS 421 Midterm 2 Name: Page 7

5. (8 pts) A grammar is given below, where terminals are written in boldface.

Exp -> Decl in Exp | int | fun id -> Exp
Decl -> let id = Exp

Assume the tokens are defined as follows:
type token = IN | INT of int | FUN | ID of string | ARROW | LET | EQ

Write a recursive descent parser for this language. A skeleton code is given for you below. This parser is
a “recognizer:” it does not return an AST but instead a (token list) option. (Recall that the definition of
option: type o option = Some a | None.)

let rec parseDecl toklist =
match toklist with
LET::ID(x)::EQ::rest ->

and parseExp toklist =
match toklist with
INT(n)::rest ->

CS 421 Midterm 2 Name: Page 8

6. (8 pts) Assume the tokens in the following grammar are Ident, Fun (keyword “fun”), and Arrow (“->”
This is a grammar for the lambda calculus (“LE” is for “Lambda Expression”):

LE -> Ident | Funldent Arrow LE | LELE

(a) This grammar is ambiguous. There are exactly two parse trees for expression “fun x -> x x”. Show
both of them:

(b) Given this grammar, ocamlyacc will report a conflict, but will nonetheless produce a parser, in which
any shift-reduce conflicts will be resolved by shifting. Give the sequence of shift-reduce steps that
ocamlyacc will do when parsing “fun x -> x x”. Among all the actions, there is one shift action that is
taken because of the rule just stated, i.e. where there is a shift/reduce conflict; reducing at that step is
possible and would lead to the other parse tree; circle this one shift action.

Action Stack Input
1. Sh fun x->xx

2. fun X -> X X

10. Accept LE

CS 421 Midterm 2 Name: Page 9

7. (6 pts) Write the following APL expressions. You can use either APL or APL-in-OCaml notation, as you
prefer. The APL cheat sheet is given at the end of the exam.

(a) Given a vector v, compute the vector of differences of consecutive elements of v. For instance, given
the input vector [1; 4; 2; 9; 5], it should return the vector [-3; 2; -7; 4]. (Hint: You’ll need to use the
array subscripting operation @@.)

(b) Given a number n, return an n-by-n matrix containing the numbers 1 through n”2 in reverse order,
43

in row-major order. For example, if nis 2, the result is the matrix 21 .

8. (6 pts) This question concerns the definition of “large” values — in this case, a dictionary value — using
higher-order functions in OCaml. A dictionary which associates keys of type a with values of type f3, can
be expressed as a function from o to B option. Define

type 'a 'b dictionary = 'a -> 'b option;;
type ‘a option = Some ‘a | None;; (* reminder *)
A dictionary d maps k to v when d k = Some v, and contains no value for k when d k = None.

a) Define emptydict, the dictionary that contains no key-value pairs.

b) Define the function insert d a b, which inserts the mapping of a to b into the dictionary d, overwriting
any previous value associated with the key a.

CS 421 Midterm 2 Name: Page 10

9. (4 pts) We want to define the same representation for dictionaries in Java, using function objects,
that we used in OCaml in the previous question. Complete the definition of insert in the following Java
implementation of dictionaries, where the keys are of type int and the values are of type String. Use null
to represent the value None.

interface IntStringDict {
String apply (int x);
}

class DictOps {

static IntStringDict emptydict = new IntStringDict(){
String apply (int x) { return null; }

b

static IntStringDict insert (final IntStringDict d, final int a, final String b) {

CS 421 Midterm 2 Name: Page 11

10. (12 pts) Operational semantics. The rules for OS,, are given at the end of the exam. Instead of
asking you to write one large proof tree, we’re asking for several small ones. For problems a-c, fill in the
complete proof trees (we’ve given skeletons), and write, on each line, the name of the axiom or rule of
inference used in that line.

(a)

x >4}, x+1U5

(b)

{y >4}, (funx->y)3U5

(c) For this problem, we abbreviate value <fun x->y, {y — 3}> by the symbol k.

{g—>K},g4U3

(d) Give an operational semantics rule for let expressions:

(Let)

7, let x=el in e2 Uwv

CS 421 Midterm 2 Name: Page 12

11. (10 pts) Give a proof in the Tocami System (see rules at back of exam) of the judgment:

Dtlet f = fun x -> true in f (f 3): bool

Hint: You can abbreviate the type environment {f : Va. a—bool} by n;. We recommend that you turn
the paper sideways (landscape mode) to do this problem.

CS 421 Midterm 2 Name: Page 13

12. (8 pts) For these two program fragments, give an invariant for each loop. Keep in mind that the
invariant must be true upon entering the loop (so the statements preceding the loop must make it true);
it must, when combined with the negation of the loop condition, imply the post-condition; and it must,
of course, be invariant.

(a) Aisthe program:

i=n;

p=1

while (i>0) {
p:=p*2;
i=i-1;

}

and the Hoare formula for the program as a wholeis: n>=0{ A} p =2". Give the loop invariant.

(b) Bisthe program

X :=x0;s:=0;

while (x I=1[]) {
s :=s+ hd(x);
X :=tl(x);

}

[x0]-1 4
and the Hoare formula for the program as a whole is: true {B} s = 2o hd (t/'(x0)). (|x0| denotes the

length of x0, and tl'(x0) denotes tl applied to x0 i times.)

CS 421 Midterm 2 Name: Page 14

(c) (4 EC pts) Ciis the program:

i:=0;
while (i<a.length) {
j =i+l
while (j<a.length) {
if (ali] > aljl)
s:=ali]; a[i] :=a[j]; alj] :=s;
i+
}
i++;

}

The overall Hoare formulais: 0< |a| {C} Vk.0 <k< |a|-2 = a[k] <a[k+1]. (|a]| denotes the length of
a. With indexing from zero, the valid indices of a are 0, ..., |a]-1, so the post-condition asserts that the
entire array is sorted. Give an invariant for the outer loop.

CS 421 Midterm 2

Name:

Page 15

APL Reference

I COperation Expression Value |
Sample data 4 ; a 2,3-matrix Lo23
! ' 4 5 6
V ; a 3-vector 2 4 6
C ; a logical 2Z-vector 1 0
D ; a logical 3-vector 1 01
Arithmetic A +@ A Lo4-9
16 25 36
V -@ (newint 1) 1 3 5
. . 0 0 0
Relational 4 »>@ (newint 4) 001 1
Reduction 1+ V 12
maxR A 3 6
Compression D%V 2 6
C WA 1 2 3 (al3matrix)
Shape shape A 2 3
Ravelling ravel A 1 2 3 4 5 6
ravel (newint 1) 1
Restructuring rho (shape A4) V 2 46
= 2 4 6
rho (shape V) C 1 0 1
Catenation A"acC 1 2 3 4 5 6 1 0
Index generation | indx (newint &) 1 2 3 4 65
1 4
Transposition trans A 2 5
3 6
Subscripting V 22 (indx (newint 2)) 2 4
A 22 (newint 1) 1 2 3 (al3matrnx)
(trans A) @@ (indx (newint 2)) ; ;_ll

CS 421 Midterm 2 Name: Page 16

Rules of TOCamI

(Const) , and similarly for other constants (true: bool, []: Va.a list, etc.)
'k 0:int

(Var) I['(x)=0 1<o0
I'Hx:t

(Application) TFei:t'—>t T'he:t
I'~ee,:t

(Abstraction) I[x:t]-e:q

~funx—e:t—1

(ley) ke, ;1" T[x:GENp(t")]Fe,:1
I'~letx=e,ine,:t

Rules of OS,

(Const) n,k Uk (Var) n,X U Tl(x)

(Abstr) nfun x—e U (fun x—>e,m)

® e lv, ne lv, vav,@v,

ne, ®e, lv

(App)
ne, L{funx—emny ne, v nx—vliely

nee, bv'

