
 1

CS421 Summer 2010 Final

• You have 180 minutes to complete this exam.

• This is a closed-book exam. All other materials, besides pens, pencils and erasers,
are to be away.

• Do not share anything with other students. Do not talk to other students. Do not
look at another student’s exam. Do not expose your exam to easy viewing by other
students. Violation of any of these rules will count as cheating.

• Please write your name and NetID in the spaces above, and also at the top of every
page.

Name:

NetID:

 2

CS 421 Final Name:____________________________________

Problems Possible Points Points Earned

1

2

3

4

5

6

7

8

 9

10

 11

 Total

22

15

19

16

22

20

15

15

8

 18

 15

 3

CS 421 Final Name:____________________________________

1. (22 pts total) Write an Ocaml function sum_bigger : int -> int list -> int that, when
applied to an integer m and a list of integers l, returns the sum of all elements of l that
are strictly greater than m or 0 if there aren’t any, in each of the following ways:

(a) (6 pts) Using forward recursion over lists as the only form of recursion

(b) (8 pts) Using tail recursion as the only form of recursion

(c) (8 pts) Using no explicit recursion, but using the function
List.fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

 4

CS 421 Final Name:____________________________________

2. (15 pts) Consider the following Ocaml code:

let all_nonneg list =
let rec all_nn b l =
 match l with [] -> b
 | (x::xs) -> all_nn (b && x >= 0) xs
in all_nn true list;;

a. (3 pts) What is the type of all_nonneg?

b. (4 pts) What is the type of all_nonneg_k, the result of transforming all_nonneg into
continuation passing style?

c. (8 pts) Write the Ocaml function all_nonneg_k that is the full continuation passing
style version of the Ocaml function given in part a. You must translate each
procedure call into CPS, but you may treat the operations >= and && as primitive,
and not translate them into a form taking a continuation. All other procedures must
take a continuation as an argument.

 5

CS 421 Final Name:____________________________________
3.(19 pts total) The following is an outline of a type derivation.

A B
 let rec rule

{ f: int -> int -> int; z : int } |- let rec f = fun x -> f x z in f 5 : ?

a) (3 pts) The value for ? is:

b) (6 pts) Give the type derivation (not type inference) that B represents (hint: it is
smaller than the one for A). Here and in the next part, you may give names to your
environments to save space and writing. You may also want to do A in part c on the
next page first. Label all inferences with the rule used.

 6

CS 421 Final Name:____________________________________

3. (cont.) The following is an outline of a type derivation.

A B
 let rec rule

{ f: int -> int -> int; z : int } |- let rec f = fun x -> f x z in f 5 : ?

c) (10 pts) Give the type derivation that A represents. Label all inferences with the rule
used.

 7

CS 421 Final Name:____________________________________

4. (16 pts total) For each of the following languages (ie, sets of strings), write a regular
expression generating the set, and draw a deterministic finite state automaton
accepting the set:

(a) (8 pts) The set of all strings of a’s, b’s, and c’s such that every third character
is c.

(b) (8 pts) The set of all strings of 0’s, and 1’s, such that between any two
consecutive 1’s, there are at least two 0’s.

 8

CS 421 Final Name:____________________________________

5. (22 pts total) Consider the following grammar:

<E> ::= ! <E> | <E> && <E> | (<E>) | 0 | 2

(a) (4pts) Demonstrate that the above grammar is ambiguous.

(b) (10 pts) Disambiguate the above grammar. Your grammar should have ! bind more

tightly than &&, and && associate to the right.

 9

CS 421 Final Name:____________________________________

5. (cont.)
(c) (8 pts) Using the grammar you gave above in b, give a parse tree for:

0 && (! 2 && 2) && 0

 10

CS 421 Final Name:____________________________________

6. (20 pts total) Consider the following grammar:

<S> ::= <A> ! | <A> ; <S>
<A> ::= 0 | 1 | % <A>

(a) (3pts)Write an Ocaml type representing the tokens you would need to parse this
language.

(b) (7pts) Write a collection of Ocaml types representing parse trees for the given
grammar.

 11

CS 421 Final Name:____________________________________

6.(cont.) Consider the following grammar:

<S> ::= <A> ! | <A> ; <S>
<A> ::= 0 | 1 | % <A>

(c) (10 pts) Write a function parse that returns an <S> parse tree (as represented by your
types given in part (b)) when applied to a list of tokens (as given in part (a)).

 12

CS 421 Final Name:____________________________________

7. (15pts) In the last MP , you were asked to write a function eval_exp : exp *
memory -> value. You were given the following types (abbreviated here) and
functions:

type exp = VarExp of string | ConstExp of const | AppExp of exp * exp
 | FunExp of string * exp | . . .

type memory = (string * value) list
and value = Intval of int | Boolval of bool | Closure of string * exp * memory | . . .

val make_mem : string -> value -> memory = <fun>
val lookup_mem : memory -> string -> value = <fun>
val ins_mem : memory -> string -> value -> memory = <fun>

Write the clause(s) for eval_exp to handle function application as given by the
following rule:

(e1, m) ↓ <x → e’, m’> (e2, m) ↓ v’ (e’, m’ + {x → v’}) ↓ v

(e1 e2, m) ↓ v

 13

CS 421 Final Name:____________________________________

8. (15 pts) Which of the following rules are natural semantics rules and which are
transition semantics rules for if b then c fi: (We are using ∼ here for both forms of
evaluation relations)

 ii) (B,m) ∼ false

 i) (if true then C fi, m) ∼ (C, m) (if B then C fi, m) ∼ m

 iii) (B,m) ∼ (B’,m)

 (if B then C fi, m) ∼ (if B’ then C fi, m)

 iv) (B,m) ∼ true (C,m) ∼ m’
 (if B then C fi, m) ∼ m’ v) (if false then C fi, m) ∼ m

Transition Semantics: ______________________________

Natural Semantics: _______________________________

9. (8 pts) For each of the following terms, write YES if the term is αβ-equivalent to
(λx. λy. x y) y and write NO otherwise:

a. (λy. λx. x y) y ___________________

b. (λx. λy. x y) z ___________________

c. (λy. λx. y x) y ___________________

d. (λx. λz. x z) z ___________________

e. (λy. x y) ___________________

f. (λw. y w) ___________________

g. (λy. y y) ___________________

h. (λy. z y) ___________________

 14

CS 421 Final Name:____________________________________

10. (18 pts total) Showing all your work, including labeling reductions, evaluate the

following:

(λx. x (λy. x)) ((λu. u) (λw. w))

(a) (9 pts) using eager evaluation

(b) (9 pts) using lazy evaluation

 15

CS 421 Final Name:____________________________________

11. (15 pts total) Given a datatype for disjoint sums as follows:
type ‘a option = Some ‘a | None

(a) (5pts) In the style of Church numerals and Church booleans, write the lambda
term that represents the constructors Some and None

(b) (10pts) Write a lambda term that corresponds to the Ocaml function
let option_map f x = match x with Some y -> Some (f y) | None -> None

 16

CS 421 Final Name:____________________________________

Rules for type derivations:

Constants:

Γ|- n : int (assuming n is an integer constant)
___________ ____________
Γ|- true : bool Γ|- false : bool

Variables:

Γ |- x : σ if Γ(x) = σ

Primitive operators (⊕ ∈ { +, -, *, …}):
 Γ |- e1 : int Γ |- e2 : int

 Γ |- e1 ⊕ e2 : int

Relations (˜ ∈ { < , > , =, <=, >= }):
Γ |- e1 : int Γ |- e2 : int
 Γ |- e1 ˜ e2 :bool

Connectives :
 Γ |- e1 : bool Γ |- e2 : bool Γ |- e1 : bool Γ |- e2 : bool

 Γ |- e1 && e2 : bool Γ |- e1 || e2 : bool

If_then_else rule:
 Γ |- e1 : bool Γ |- e2 : τ Γ |- e3 : τ

 Γ |- (if e1 then e2 else e3) : τ

Application rule: fun rule:
 Γ |- e1 : τ1 → τ2 Γ |- e2 : τ1 [x : τ1] ∪ Γ |- e : τ2

 Γ |- (e1 e2) : τ2 Γ |- fun x -> e : τ1 → τ2

let rule: let rec rule:
 Γ |- e1 : τ1 [x : τ1] ∪ Γ |- e2 : τ2 [x: τ1] ∪ Γ |- e1:τ1 [x: τ1] ∪ Γ |- e2:τ2

 Γ |- (let x = e1 in e2) : τ2 Γ |- (let rec x = e1 in e2) : τ2

