CS421 Summer 2010 Final

Name:	
NetID:	

- You have 180 minutes to complete this exam.
- This is a closed-book exam. All other materials, besides pens, pencils and erasers, are to be away.
- Do not share anything with other students. Do not talk to other students. Do not look at another student's exam. Do not expose your exam to easy viewing by other students. Violation of any of these rules will count as cheating.
- Please write your name and NetID in the spaces above, and also at the top of every page.

Name: \qquad

Problems	Possible Points	Points E arned
1	22	
2	15	
3	19	
4	16	
5	22	
6	20	
7	15	
8	15	
9	8	
10	18	
11	15	
Total		

\qquad

1. (22 pts total) Write an Ocaml function sum_bigger : int -> int list -> int that, when applied to an integer m and a list of integers I, returns the sum of all elements of I that are strictly greater than m or 0 if there aren't any, in each of the following ways:
(a) (6 pts) Using forward recursion over lists as the only form of recursion
(b) (8 pts) Using tail recursion as the only form of recursion
(c) (8 pts) Using no explicit recursion, but using the function List.fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
\qquad
2. (15 pts) Consider the following Ocaml code:
```
let all_nonneg list =
let rec}\mathrm{ all_nn b l =
    match I with [] ->b
    |(x::xs) -> all_nn (b & & x >=0) xs
in all_nn truelist;;
```

a. (3 pts) What is the type of all_nonneg?
b. (4 pts) What is the type of all_nonneg_k, the result of transforming all_nonneg into continuation passing style?
c. (8 pts) Write the Ocaml function all_nonneg_k that is the full continuation passing style version of the Ocaml function given in part a. You must translate each procedure call into CPS, but you may treat the operations $>=$ and $\& \&$ as primitive, and not translate them into a form taking a continuation. All other procedures must take a continuation as an argument.

CS 421 Final Name: 3.(19 pts total) The following is an outline of a type derivation.
let rec rule $\frac{A}{\{f: \text { int }->\text { int }->\text { int; } z: \text { int }\} \mid- \text { let rec } f=\text { fun } x->f x z \text { in } f 5: ?}$
a) (3 pts) The value for? is:
b) (6 pts) Give the type derivation (not type inference) that B represents (hint: it is smaller than the one for A). Here and in the next part, you may give names to your environments to save space and writing. You may also want to do A in part c on the next page first. Label all inferences with the rule used.
\qquad
3. (cont.) The following is an outline of a type derivation.
c) (10 pts) Give the type derivation that A represents. Label all inferences with the rule used.

CS 421 Final
Name: \qquad
4. (16 pts total) For each of the following languages (ie, sets of strings), write a regular expression generating the set, and draw a deterministic finite state automaton accepting the set:
(a) (8 pts) The set of all strings of a's, b's, and c's such that every third character is c .
(b) (8 pts) The set of all strings of 0's, and 1's, such that between any two consecutive 1 's, there are at least two 0 's.

CS 421 Final
Name: \qquad
5. (22 pts total) Consider the following grammar:

$$
<E>::=!<E>|<E>\& \&<E>|(<E>)| 0| 2
$$

(a) (4pts) Demonstrate that the above grammar is ambiguous.
(b) (10 pts) Disambiguate the above grammar. Your grammar should have! bind more tightly than $\& \&$, and $\& \&$ associate to the right.

Name: \qquad
5. (cont.)
(c) (8 pts) Using the grammar you gave above in b, give a parse tree for:
$0 \& \&(!2 \& \& 2) \& \& 0$

CS 421 Final
Name: \qquad
6. (20 pts total) Consider the following grammar:

$$
\begin{aligned}
& \langle\mathrm{S}\rangle::=\langle\mathrm{A}\rangle!\mid\langle\mathrm{A}\rangle ;\langle\mathrm{S}\rangle \\
& \langle\mathrm{A}\rangle::=0|1| \%<\mathrm{A}\rangle
\end{aligned}
$$

(a) (3pts)Write an Ocaml type representing the tokens you would need to parse this language.
(b) (7pts) Write a collection of Ocaml types representing parse trees for the given grammar.

CS 421 Final
Name: \qquad
6.(cont.) Consider the following grammar:

$$
\begin{aligned}
& \langle\mathrm{S}\rangle::=\langle\mathrm{A}\rangle!\mid\langle\mathrm{A}\rangle ;\langle\mathrm{S}\rangle \\
& \langle\mathrm{A}\rangle::=0|1| \%<\mathrm{A}\rangle
\end{aligned}
$$

(c) (10 pts) Write a function parse that returns an <S> parse tree (as represented by your types given in part (b)) when applied to a list of tokens (as given in part (a)).
\qquad
7. (15pts) In the last MP, you were asked to write a function eval_exp : exp * memory -> value. You were given the following types (abbreviated here) and functions:

$$
\begin{aligned}
\text { type exp } & =V \operatorname{arExp} \text { of string | ConstE xp of const |AppExp of exp * exp } \\
& \mid \text { FunExp of string } * \exp \mid \ldots
\end{aligned}
$$

```
type memory \(=\) (string * value) list
and value \(=\) Intval of int |Boolval of bool |Closure of string * exp * memory |...
val make_mem : string ->value ->memory \(=<\) fun \(>\)
val lookup_mem : memory \(->\) string \(->\) value \(=<\) fun \(>\)
val ins_mem : memory -> string \(->\) value \(->\) memory \(=<\) fun>
```

Write the clause(s) for eval_exp to handle function application as given by the following rule:
$\frac{\left(e_{1}, m\right) \downarrow\left\langle x \rightarrow e^{\prime}, m^{\prime}\right\rangle\left(e_{2}, m\right) \downarrow v^{\prime} \quad\left(e^{\prime}, m^{\prime}+\left\{x \rightarrow v^{\prime}\right\}\right) \downarrow v}{\left(e_{1} e_{2}, m\right) \downarrow v}$
\qquad
8. (15 pts) Which of the following rules are natural semantics rules and which are transition semantics rules for if b then c fi: (We are using ~ here for both forms of evaluation relations)
i) (if true then C fi, m) $\sim(\mathrm{C}, \mathrm{m})$
iii)

$$
\frac{(\mathrm{B}, \mathrm{~m}) \sim\left(\mathrm{B}^{\prime}, \mathrm{m}\right)}{(\text { if } \mathrm{B} \text { then } \mathrm{C} \text { fi, m}) \sim\left(\text { if } \mathrm{B}^{\prime} \text { then } \mathrm{C}\right. \text { fi, m) }}
$$

iv) $(\mathrm{B}, \mathrm{m}) \sim$ true $(\mathrm{C}, \mathrm{m}) \sim \mathrm{m}$ ' (if B then C fi, m) ~ m'
ii) (B,m) ~ false (if B then C fi, m) ~ m

Transition Semantics: \qquad
Natural Semantics: \qquad
9. (8 pts) For each of the following terms, write YES if the term is $\alpha \beta$-equivalent to ($\lambda x . \lambda y . x y$ y) y and write NO otherwise:
a. $(\lambda y, \lambda x . x y) y$ \qquad
b. $(\lambda x, \lambda y . x y) z$ \qquad
c. $(\lambda y, \lambda x . y x) y$ \qquad
d. $(\lambda x, \lambda z . x z) z$ \qquad
e. $(\lambda y \cdot x y)$ \qquad
f. ($\lambda \mathrm{w} . \mathrm{y}$ w) \qquad
g. ($\lambda \mathrm{y} . \mathrm{y} \mathrm{y})$ \qquad
h. ($\lambda \mathrm{y} . \mathrm{zy})$ \qquad

CS 421 Final
Name: \qquad
10. (18 pts total) Showing all your work, including labeling reductions, evaluate the following:

$$
(\lambda x . x(\lambda y . x))((\lambda u . u)(\lambda w . w))
$$

(a) (9 pts) using eager evaluation
(b) (9 pts) using lazy evaluation

CS 421 Final Name: \qquad
11. (15 pts total) Given a datatype for disjoint sums as follows: type 'a option = Some'a |None
(a) (5pts) In the style of Church numerals and Church booleans, write the lambda term that represents the constructors Some and None
(b) (10pts) Write a lambda term that corresponds to the Ocaml function let option_map f $x=$ match x with Some $y->$ Some (fy) | None -> None
\qquad

Rules for type derivations:
Constants:
$\overline{\Gamma \mid-\mathrm{n}: \text { int }}$ (assuming n is an integer constant)
$\overline{\Gamma \mid \text { - true : bool }} \quad \overline{\Gamma \mid \text { - false : bool }}$
Variables:
$\Gamma \mid-\mathrm{x}: \sigma \quad$ if $\Gamma(\mathrm{x})=\sigma$
Primitive operators $\left(\oplus \in\left\{+,-,{ }^{*}, \ldots\right\}\right)$:
$\Gamma \mid-\mathrm{e}_{1}:$ int $\quad \Gamma \mid-\mathrm{e}_{2}:$ int
$\Gamma \mid-\mathrm{e}_{1} \oplus \mathrm{e}_{2}$: int
Relations ($\sim \in\{\langle\rangle,,=,\langle=\rangle=$,$\}):$
$\Gamma \mid-\mathrm{e}_{1}:$ int $\quad \Gamma \mid-\mathrm{e}_{2}:$ int
$\Gamma \mid-\mathrm{e}_{1} \sim \mathrm{e}_{2}$:bool
Connectives:
$\Gamma \mid-\mathrm{e}_{1}$: bool $\quad \Gamma \mid-\mathrm{e}_{2}$: bool $\quad \Gamma \mid-\mathrm{e}_{1}$: bool $\Gamma \mid-\mathrm{e}_{2}$: bool
$\Gamma \mid-e_{1} \& \& e_{2}$: bool
$\Gamma \mid-\mathrm{e}_{1} \| \mathrm{e}_{2}$: bool

If_then_else rule:
$\Gamma \mid-\mathrm{e}_{1}$: bool $\Gamma\left|-\mathrm{e}_{2}: \tau \quad \Gamma\right|-\mathrm{e}_{3}: \tau$
$\Gamma \mid-\left(\right.$ if e_{1} then e_{2} else $\left.\mathrm{e}_{3}\right): \tau$
Application rule:
fun rule:

$$
\Gamma\left|-\mathrm{e}_{1}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma\right|-\mathrm{e}_{2}: \tau_{1}
$$

$$
\left[\mathrm{x}: \tau_{1}\right] \cup \Gamma \mid-\mathrm{e}: \tau_{2}
$$

$\Gamma \mid-\left(\mathrm{e}_{1} \mathrm{e}_{2}\right): \tau_{2}$
$\Gamma \mid$ - fun $\mathrm{x}->\mathrm{e}: \tau_{1} \rightarrow \tau_{2}$
let rule:
$\Gamma\left|-\mathrm{e}_{1}: \tau_{1} \quad\left[\mathrm{X}: \tau_{1}\right] \cup \Gamma\right|-\mathrm{e}_{2}: \tau_{2}$
$\Gamma \mid-\left(\right.$ let $\mathrm{x}=\mathrm{e}_{1}$ in $\left.\mathrm{e}_{2}\right): \tau_{2}$
let rec rule:
$\left[\mathrm{X}: \tau_{1}\right] \cup \Gamma\left|-\mathrm{e}_{1}: \tau_{1} \quad\left[\mathrm{x}: \tau_{1}\right] \cup \Gamma\right|-\mathrm{e}_{2}: \tau_{2}$
$\Gamma \mid-\left(\right.$ let rec $x=e_{1}$ in $\left.\mathrm{e}_{2}\right): \tau_{2}$

