
CS 421 Summer 2010 Midterm IIJuly 15, 2010The total time for this exam is 70 minutes.Print your name and netid below. Also write your netid at the top of each subsequent page.Name:Netid:
• This is a closed-notes exam. You are allowed only the materials in the exam packet. All othermaterials, besides pens, pencils, and erasers, are to be put away.
• Do not share anything with other students. Do not talk to other students. Do not look at anotherstudent's exam. Also, be careful not to expose your exam to easy viewing by other students. Violationof any of these rules may constitute cheating.
• If you believe there is an error, or an ambiguous question, you must document your assumptions aboutwhat the question means. The proctors are not allowed to answer questions about the exam otherthan the meaning and usage of English words and phrases.
• Including this cover sheet and scratch pages, there are 8 pages to the exam. Please verify that youhave all 8 pages. Question Total points Score Grader1 122 103 144 105 106 14TOTAL 70

1

1. (12 points)Give a type inference and a constraint set for the following expression.let rec f = fun x -> if x<0 then (x*x,x) else let g = f in (0,0) in 1You don't need to solve the constrains, just present them. Show all of the steps with the name of therule that you are applying in each step. A reference sheet containing all rules is at the end of thisexam.
Solution:(1) LetRec:
Γ `let rec f = fun x -> if x<0 then (x*x,x) else let g = f in (0,0) in 1 : α(1-1) Fun:
Γ ∪ [f : β] `fun x -> if x<0 then (x*x,x) else let g = f in (0,0) : β(1-2) Int:
Γ ∪ [f : β] `1 : α (α,int)(1-1-1) If:
Γ ∪ [f : β, x : γ] `if x<0 then (x*x,x) else let g = f in (0,0) : δ (β,γ → δ)(1-1-1-1) App: (here we know that < is a function with integer parameters)
Γ ∪ [f : β, x : γ] `x<0 : bool (γ,int)(1-1-1-2) Pair:
Γ ∪ [f : β, x : γ] `(x*x,x) : (τ1,τ2) (δ,(τ1,τ2))(1-1-1-2-1) Arith:
Γ ∪ [f : β, x : γ] `x*x : τ1 (γ,int), (τ1,int)(1-1-1-2-2) :
Γ ∪ [f : β, x : γ] `x : τ2 (τ2,γ)(1-1-1-3) Let:
Γ ∪ [f : β, x : γ] `let g = f in (0,0) : δ(1-1-1-3-1) :
Γ ∪ [f : β, x : γ] `f : η (η, β)(1-1-1-3-2) Pair :
Γ ∪ [f : β, x : γ, f : η] `(0,0) : (µ1, µ2) (δ, (µ1,µ2))(1-1-1-3-2-1) Int:
Γ ∪ [f : β, x : γ, f : η] `0 : µ1 (µ1,int)(1-1-1-3-2-2) Int:
Γ ∪ [f : β, x : γ, f : η] `0 : µ2 (µ2,int)

2. (10 points)Find the most general substitution that satis�es the following set of constrains. Show each step ofuni�cation algorithm as you perform it.
{

(

s(s(z)), s(w)
)

,
(

f(x, g(x)), f(y, z)
)

,
(

g(y, x), g(s(v), y)
)

}2

Solution:decomposition: {

(

s(z), w
)

,
(

f(x, g(x)), f(y, z)
)

,
(

g(y, x), g(s(v), y)
)

}orientation: {

(

w, s(z)
)

,
(

f(x, g(x)), f(y, z)
)

,
(

g(y, x), g(s(v), y)
)

}elimination: {

(

f(x, g(x)), f(y, z)
)

,
(

g(y, x), g(s(v), y)
)

} with w = s(z)decomposition: {

(x, y),
(

g(x), z
)

,
(

g(y, x), g(s(v), y)
)

} with w = s(z)elimination: {

(

g(y), z
)

,
(

g(y, y), g(s(v), y)
)

} with w = s(z) o x = yorientation: {

(

z, g(y)
)

,
(

g(y, y), g(s(v), y)
)

} with w = s(z) o x = yelimination: {

(

g(y, y), g(s(v), y)
)

} with w = s(z) o x = y o z = g(y)decomposition: {

(

y, s(v)
)

, (y, y)
} with w = s(z) o x = y o z = g(y)elimination: {

(

s(v), s(v)
)

} with w = s(z) o x = y o z = g(y) o y = s(v)decomposition: {

(v, v)
} with w = s(z) o x = y o z = g(y) o y = s(v)deletion: {} with w = s(z) o x = y o z = g(y) o y = s(v)deletion: {} with w = s(z) o x = s(v) o z = g(s(v)) , y = s(v)deletion: {} with w = s(g(s(v))) o x = s(v) , z = g(s(v)) , y = s(v)deletion: {} with w = s(g(s(v))) , x = s(v) , z = g(s(v)) , y = s(v)

3. (6+2+6 points)(a) Design a DFA that accepts all strings w over the alphabet {a, b, c} such that the number of a's in
w has the same parity as the number of b's in w (both even or both odd).Hint: Your DFA could contain a state for when both number of a's and b's are odd, a state forwhen a's are even and b's are odd, and so on (four possibilities).
Solution: 1 2a, b

a, b

c c3

(b) i. Write a regular expression that generates all strings w over the alphabet {a, b, c} such that whas a substring ab.
Solution:

(a + b + c)∗ab(a + b + c)∗ii. Write a regular expression that generates all strings w over the alphabet {a, b, c} such that wdoes not have a substring ab.
Solution:

(b + a∗c)∗a∗

4. (10 points)Write an ocamllex speci�cation for tokens of this type:type mytoken = PLUS | ID of string | INT of intwhere PLUS is operator +, ID is any string of odd length made out of letters of english alphabet anddigits that starts with a letter, and INT is a string of digits. Have your speci�cation to return the nexttoken in the input. You may want to use this function int_of_string: string -> int.As a hint, we have provided the following template for you to complete. Feel free to add as many casesas you want to the parse section.rule main = parse_______________________________ { ____________________________________ }| _______________________________ { ____________________________________ }| _______________________________ { ____________________________________ }{let newlexbuf = (Lexing.from_channel stdin) inprint_string "starting ...";;main newlexbuf}
4

Solution:rule main = parse'+' { PLUS }|['0'-'9']+ as s { INT int_of_string s }|(['a'-z','A'-'Z'](['a'-z','A'-'Z','0'-'9'] ['a'-z','A'-'Z','0'-'9'])*) as s {ID s}
5. (5+5 points)Consider the following grammar

S =⇒ AB

A =⇒ BAB | aB
B =⇒ AB | b | BBB(a) Give a parse tree for ababbabbb.

Solution: SAa BBb BAa Bb Bb BAa Bb Bb
Bb

(b) Show that this grammar is ambiguous by presenting two parse trees that produce the same string.
Solution: 5

SAa Bb BABb Aa Bb Bb Bb
SAa Bb BBb BAa Bb Bb Bb

6

Rules for type derivations:(Unit) Γ ` () : unit Γ ` [] : τ list (Nil)(Bool)
Γ ` b : bool where b = true or false(Int)
Γ ` n : int where n is an integer(Float)
Γ ` n : �oat where n is a �oating point number(Var)
Γ ` x : τ

where Γ(x) = τ(Pair) Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : (τ1, τ2)(List) Γ ` eh : τ Γ ` et : τ list
Γ ` eh::et : τ list(Fun) Γ ∪ [x : τx] ` e : τe

Γ ` fun x -> e : τx → τe(App) Γ ` ef : τa → τr Γ ` ea : τa

Γ ` ef ea : τr(Let) Γ ` ex : τx Γ ∪ [x : τx] ` e : τ

Γ ` let x = ex in e : τ(LetRec) Γ ∪ [x : τx] ` ex : τx Γ ∪ [x : τx] ` e : τ

Γ ` let rec x = ex in e : τ(Arithmetic Operators) Γ ` e2 : int Γ ` e1 : int
Γ ` e1 ⊕ e2 : int (⊕ ∈ {+,−, ∗, /, · · · })(If) Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

scratch paper

scratch paper

