
CS 421 Summer 2010 Midterm I

June 28, 2010

The total time for this exam is 70 minutes.

Print your name and netid below. Also write your netid at the top of each subsequent page.

Name:

Netid:

• This is a closed-notes exam. You are allowed only the materials in the exam packet. All other
materials, besides pens, pencils, and erasers, are to be put away.

• Do not share anything with other students. Do not talk to other students. Do not look at another
student's exam. Also, be careful not to expose your exam to easy viewing by other students. Violation
of any of these rules may constitute cheating.

• If you believe there is an error, or an ambiguous question, you must document your assumptions about
what the question means. The proctors are not allowed to answer questions about the exam other
than the meaning and usage of English words and phrases.

• Including this cover sheet, the reference sheet at the end, and scratch pages, there are 8 pages to the
exam. Please verify that you have all 8 pages.

Question Total points Score Grader

1 6

2 10

3 5

4 23

5 12

6 14

TOTAL 70
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1. (6 points) Fill the blanks with the type of these functions.

let rec sumpoly p1 p2 = match p1,p2 with

[],[] -> []

| [], (y::ys) -> ys

| (x::xs), [] -> xs

| (x::xs,y::ys) -> (x+.y)::sumpoly xs ys;;

val sumpoly : ______________ -> ______________ -> ______________ = <fun>

Solution:

val sumpoly : float list -> float list -> float list = <fun>

2. (10 points) Write each step of evaluating this function.

# let app fs x =

let rec app_aux fl acc=

match fl with [] -> acc

| (f :: rem_fs) -> app_aux rem_fs

(fun z -> acc (f z))

in app_aux fs (fun y -> y) x;;

# app [(fun x -> x + 1); (fun d -> d+2)] 2;;

- : int = 5

If you want to use any shorthand to denote an expression, explicitly mention it.
Here are the �rst few steps:

app [(fun x -> x + 1); (fun d -> d+2)] 2;;

= app_aux [f;g] (fun y -> y) 2;; [We assume f = (fun x -> x + 1), g = (fun d -> d+2)]

= ...

Solution:

app [(fun x -> x + 1); (fun d -> d+2)] 2;;

= app_aux [f;g] (fun y -> y) 2;; [We assume f = (fun x -> x + 1), g = (fun d -> d+2)]

= app_aux [g] (fun y -> i (f y)) 2;; [Assume i = (fun y -> y)]

= app_aux [] (fun y -> h (g y)) 2;; [Assume h = (fun y -> i (f y))]

= (fun y -> h (g y)) 2;;

= h (g 2) = h 4 = (fun y -> i (f y)) 4 = i (f 4) = i 5 = (fun y -> y) 5 = 5
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3. (1+1+3 points) Write the following OCaml function converge as described below:
converge is a function of type ('a -> 'a) -> 'a -> int -> 'a.
converge f n i applies f to n repeatedly until a �xed point x where f x = x is reached. At each
step it checks for the equality of (f x) to x: in the terminating case x should be returned, otherwise
the new value is stored in x for the next iteration. This function will fail to terminate if no �xed point
can be reached by this method. In order to terminate, the function will only recurse i times. If f does
not converge in i number of recursions, then a Timeout exception will be raised. If a user mistakenly
supplies a negative number for i then a NegativeCount exception will be raised.

Note that the value of x changes as follows, in order

x=f(n), x=f(f(n)), x=f(f(f(n))), ...

and if it can't �nd a �xed point after the following value is assigned

x=

i times︷ ︸︸ ︷
f(f(...f(n)...))

it will give up by raising an exception.

(a) De�ne an exception Timeout.

Solution:

# exception Timeout;;

(b) De�ne an exception NegativeCount.

Solution:

# exception NegativeCount;;

(c) Write the function itself. First have a look at these sample runs:

# converge (fun x-> (x +. 2.0 /. x) /.2.0) 1.0 10;;

- : float = 1.41421356237309492

# converge (fun x-> (x +. 2.0 /. x) /.2.0) 1.0 1;;

Exception: Timeout.

# converge (fun x-> (x +. 2.0 /. x) /.2.0) 1.0 (-5);;

Exception: NegativeCount.

and now write the function:

let rec converge f n i = ________________

Solution:
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let rec converge f n i =

match i with

|0 -> raise Timeout

|t -> if (t<0) then raise NegativeCount

else (let res = (f n) in if n=res then n else converge f res (t-1));;

4. (6+1+8+8 points)

(a) Write a function split_list in tail recursion form to split an integer list into two parts. Each
part will be a list, the �rst one containing integers greater than or equal to zero; and the second
one containing a list of negative integers. The integers will be in the same order as they are in
the original list. You can use the @ operator to concatenate lists. Here is the function with some
sample runs:

# let split_list lst = ...

val split_list : int list -> int list * int list = <fun>

# split_list [1;3;0;-2;-5;6;0;-7];;

- : int list * int list = ([1; 3; 0; 6; 0], [-2; -5; -7])

# split_list [];;

- : int list * int list = ([], [])

Now write the function (Hint: You have to keep two accumulators):

let split_list lst =

let rec aux lst (acc1,acc2) = ___________

Solution:

let split_list lst =

let rec aux lst (acc1,acc2) =

match lst with

[] -> (acc1,acc2)

| x::xs -> if (x>=0)

then (aux xs ((acc1@[x]),acc2))

else (aux xs (acc1,(acc2@[x])))

in aux lst ([],[]);;

(b) If you want to rewrite the previous part function with higher order functions, which one will you
use: List.fold_left or List.fold_right ?

Solution:

List.fold_left
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(c) Rewrite the function with a higher order funcion: List.fold_left or List.fold_right whichever
is appropriate.
(Hint: Remember you had two accumulators.)

Solution:

let split_list lst = List.fold_left

(fun (acc1, acc2) -> fun x ->

if (x>=0) then (acc1@[x],acc2) else (acc1,acc2@[x]))

([],[])

lst;;

(d) Suppose you have a report function that takes a tuple of lists and prints them. That is, the result
of the split_list function written in the �rst part of this problem could be passed to it.

You might skip this paragraph; this paragraph speci�es the report function.

# let rec print_list lst = match lst with

[] -> print_string " "

| x::xs -> print_int x; print_string " " ; print_list xs;;

val print_list : int list -> unit = <fun>

# let report (lst1,lst2) = print_list lst1;print_list lst2;;

val report : int list * int list -> unit = <fun>

Write the function described in the �rst part of this problem in continuation passing style.

# let split_listk lst k =

let rec aux lst (acc1,acc2) k = _____________

Solution:

let split_listk lst k =

let rec aux lst (acc1,acc2) k=

match lst with

[] -> (k (acc1,acc2))

| x::xs -> if (x>=0)

then (aux xs ((acc1@[x]),acc2) k)

else (aux xs (acc1,(acc2@[x])) k)

in aux lst ([],[]) k;;

5. (4+8 points) Suppose you have a binary tree de�ned with the following data type.

# type 'a t = Empty| Node of 'a t * 'a * 'a t;;

type 'a t = Empty | Node of 'a t * 'a * 'a t
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Here is a sample tree.

# let tree =

Node(Node(Node(Empty,4,Empty),5,Node(Empty,6,Empty)),10,Node(Empty,12,Empty));;

val tree : int t =

Node (Node (Node (Empty, 4, Empty), 5, Node (Empty, 6, Empty)), 10,

Node (Empty, 12, Empty))

(a) Draw the tree.

Solution:

10

/ \

5 12

/ \

4 6

(b) Write a function for inorder traversal of the tree. For a tree starting at its root, an inorder traversal
would traverse the left subtree �rst, then the root node and then the right subtree, printing the
values of the nodes on the console as visited. Note that visiting left and right subtrees themselves
should be performed by an inorder traversal recursively.

Here is the function signature:

# let rec inorder tree = ...

val inorder : int t -> unit = <fun>

Here is a sample run:

# inorder tree;;

4 5 6 10 12 - : unit = ()

Now write the function:

# let rec inorder tree = ___________

Solution:

let rec inorder tree =

match tree with

|Empty -> print_string " "

|Node (left, a, right) -> (inorder left); print_int a; (inorder right);;

val inorder : int t -> unit = <fun>

6. (14 points) Assume we have this environment:

Γ = [x:int, f:int -> float -> int].
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Derive the type of the following statement, that is prove that:

Γ ` (f x 2.1, x) : int * int

Each time write the name of the rule that you want to apply. A list of all rules is at the end of this
problem.

Solution:

(1): Γ ` 2.1 : float (Float)
(2): Γ(x) = int⇒ Γ ` x : int (Var)
(3): (2)&Γ(f) = int->float->int⇒ Γ ` f x : float -> int (App)
(4): (3)&(1)⇒ Γ ` f x 2.1 : int (App)
(5): (2)&(4)⇒ Γ ` (f x 2.1, x) : int * int (Pair)

(Unit) Γ ` () : unit Γ ` [ ] : τ list (Nil)

(Bool)
Γ ` b : bool

where b = true or false

(Int)
Γ ` n : int

where n is an integer

(Float)
Γ ` n : �oat

where n is a �oating point number

(Var)
Γ ` x : τ

where Γ(x) = τ

(Pair)
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : (τ1, τ2)

(List)
Γ ` eh : τ Γ ` et : τ list

Γ ` eh::et : τ list

(Fun)
Γ ∪ [x : τx] ` e : τe

Γ ` fun x -> e : τx → τe

(App)
Γ ` ef : τa → τr Γ ` ea : τa

Γ ` ef ea : τr

(Let)
Γ ` ex : τx Γ ∪ [x : τx] ` e : τ

Γ ` let x = ex in e : τ

(LetRec)
Γ ∪ [x : τx] ` ex : τx Γ ∪ [x : τx] ` e : τ

Γ ` let rec x = ex in e : τ



scratch paper

scratch paper


