
CS 421 Final Exam review session

� Outline

� Overview

� Your questions

� General

� Sample exam problems

8/3/2009 1

Overview

� Format

� Comprehensive, but heavy emphasis on 2nd half

� 2 hours (120 minutes)

� Closed-book, closed-notes

� No calculators, no phones, no computers, no talking

� No clarifications� No clarifications

� Content:

� MPs

� Lecture examples

� Lecture slides

� Midterm exam

� Mostly analysis + synthesis, not recall

8/3/2009 2

Lecture 11-12 – Code generation

� Basic idea: given a statement or expression in the
language we are compiling, generate equivalent “virtual
machine” instructions

� Example: while loop (with break/continue support)

[while e do S] = let L1,L2,L3 = genlabel()

and (I, t) = [e]

in

JUMP L2

L1: [S]L3,L2

L2: I

CJUMP t,L1,L3

L3:

8/3/2009 3

Lecture 17-18 – scoping and environments

� Basic idea: which declaration of a variable name does
each use of a variable name correspond to?

� OCaml – static (lexical) scope

� “Closest enclosing definition”

� Example:
� let x = 2

in let y = x

in let f z = let x=3 in y+z

in f x

8/3/2009 4

Lecture 17-18 – scoping and environments

� Implementing scope: environment/closure model

� Put free variables in an “environment” data structure (set of
name -> value pairs)

� Update the environment as we evaluate expressions

� Closures needed for let expressions and abstraction� Closures needed for let expressions and abstraction

� Actually, let expressions are abstractions

� “let x = a in e” is just “(fun x -> e) a”

� <expr, env>

� Inside the body of the function (e)

� Get free variables from the application environment (actual arg)

� Get bound (non-free) variables from the closure environment

8/3/2009 5

Lecture 17-18 – scoping and environments

� Example: (fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)
parse order:

(f a) b

f = (fun x -> fun y -> x y), a = (fun y -> y 4), b = (fun z -> z+1)

evaluation order: the same

1. evaluate (f a)

a) evaluate a = (fun y -> y 4) – cannot simplify furthera) evaluate a = (fun y -> y 4) – cannot simplify further

b) replace x by a in body of f:

f’ = fun y -> (fun y -> y 4) y

c) evaluate f’ = fun y -> (fun y -> y 4) y

1) replace all “free” occurences of y by … y

2) evaluate f’’ = fun y -> y 4 – cannot simplify further

2. evaluate (f’’ b)

a) evaluate b = (fun z -> z+1) – cannot simplify further

b) replace y by b in the body of f’’: (fun z -> z+1) 4

… 4+1 = 5

8/3/2009 6

Lecture 17-18 – parser combinators

� Basic idea:

� Define some basic top-down parser functions (token, epsilon, …)

� Define higher-order functions for combining parser functions

� Build more complex parsers out of simpler parser functions

� Parser to recognize a single token:

let token s = fun cl -> if cl=[] then None

else if s=hd cl then Some (tl cl)

else None;;

let parsex = token ‘x’;;

8/3/2009 7

Lecture 17-18 – parser combinators

� “Combinators” to combine parsers into larger parsers:

let (++) p q = fun cl -> match p cl with None -> None

| Some cl' -> q cl';;

let (||) p q = fun cl -> match p cl with None -> q cl

| Some cl' -> Some cl';;| Some cl' -> Some cl';;

let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

8/3/2009 8

Lecture 19 – function objects

� Basic idea:

� Write objects that behave like functions (stateless, n args -> 1
output, operate on other function objects, etc.)

� Implement functional programming style in imperative O-O
languages

� What’s involved:

� Interface – defines “type signature”, e.g., int -> int -> bool

� Function object – implements the interface (body of function)

� Anonymous inner class = anonymous function (fun x -> …)

� Operator overloading

� Rather than defining the .apply() method, redefine the () operator

� new Incr(2) instead of (new Incr).apply(2)

8/3/2009 9

Lecture 19 – function objects

� Function objects in Java
interface IntFun {

int apply(int x);

}

interface IntFun2 {

int apply(int x, int y);

}

In Ocaml:

let compose2 f g h = fun x -> f(g x, h x)

8/3/2009 10

}

IntFun compose2 (IntFun2 f, IntFun g, IntFun h) {

return new IntFun {

int apply(int x) {

return f.apply(g.apply(x), h.apply(x));

}

};

}

Lecture 20 – Proof systems

� Basic idea: build a framework for writing proofs without
“handwaving”

� Should be understandable to a computer program

� Example

� Bad: x > 5, therefore x > 0

� Good: � Good:

x > 5 5 > 0

(Trans) -----------------

x > 0

� Read: “If (x > 5) is true and (5 > 0) is true, then by the
Transitivity rule (x > 0) is true.”

� If x > 5 and 5 > 0 are axioms, we are done. Otherwise, prove x
> 5 and 5 > 0.

8/3/2009 11

Lecture 20 – Proof systems

� Proof system

� Judgments – logical propositions we want to test

� Judgments are boolean predicates (evaluate to true or false)

� Axioms – judgments assumed to be true without proof

� Inference rules – relations between judgments

� Proofs� Proofs

� Sequence (tree) of inference rules and axioms

� Rooted at the judgment we want to prove

� Internal nodes = inference rules

� Leaves = axioms (if judgment is true)

� We are interested in two particular PSs:

� Type systems – type checking & type inference

� Semantics – correctness

8/3/2009 12

Lecture 20 – Proof systems

� Example: (fun x -> + x x) (+ 3 4) ⇓ 14

� AST
app

/ \

abstr app

/ | |

x app +x app +

/ \ / \

x x 3 4

� Proof
(const) ------ ------

3 ⇓ 3 4 ⇓ 4 3+4 ⇓ 7

(delta) --------------------------------

… (+ 3 4) ⇓ 7 …

(App) ---------------------------------------

(fun x -> + x x) (+ 3 4) ⇓ 14

8/3/2009 13

Lecture 21 – type systems

� Basic idea: prove expression e has type t
� Complication: polymorphic types

� Types contain variables (notated α, β, …)

� E.g., ‘a list, (‘a * ‘b) list, …

� Variables can be generalized in some circumstances;
types with generalized variables are written α, β, … . τ,

and called type schemes

8/3/2009 14

∀

Lecture 21 – type systems

Application and abstraction rules are the same as in Tsimp.
Also add rules for tuples.

(Application)

':

:':

21

21

τ

τττ

ee

ee

−Γ

−Γ→−Γ ˫ ˫

˫

(Abstraction)

(Tuple)

8/3/2009 15

21

':fun

':]:[

ττ

ττ

→→−Γ

−Γ

ex

ex ˫

˫

2121

2211

*:),(

::

ττ

ττ

ee

ee

−Γ

−Γ−Γ ˫ ˫

˫

Lecture 21 – type systems

let and letrec are new:

(let)

τ

τττ

:in let

:)]'(:[':

21

21

eex

eGENxe

=−Γ

−Γ−Γ
Γ

˫ ˫

˫

(letrec)

8/3/2009 16

τ

ττττ

:in reclet

:)]'(:[':]':[

21

21

eex

eGENxex

=−Γ

−Γ−Γ
Γ

˫ ˫

˫

Lecture 22 – operational semantics

� Basic idea: prove expression e has value v
� Evaluate in the same order as the expression is parsed

� Structure of the AST determines structure of the proof

8/3/2009 17

Lecture 24 – Hoare logic

� Basic idea: prove correctness of imperative programs

� Can no longer simply evaluate expressions; have sequence of
statements instead

� Hoare formulas (judgments)

� P {A} Q� P {A} Q

� Precondition-program-postcondition

� Hard part: finding and proving the loop invariant

� P { while b … } P & !b

� And termination:

� Define phi(state) s.t. phi(statei+1) < phi(statei)

8/3/2009 18

Lecture 24 – Hoare logic

x+y = fib (z+1) ∧ x+y∧ x+y∧ x+y∧ x+y----x = fib (z+1x = fib (z+1x = fib (z+1x = fib (z+1----1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n

{y := x + y}

x = 0 ∧∧∧∧ y = 1 ∧ z = 0 ∧ 1 ≤ n∧ z = 0 ∧ 1 ≤ n∧ z = 0 ∧ 1 ≤ n∧ z = 0 ∧ 1 ≤ n ���� y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n

y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n ∧∧∧∧ ¬(¬(¬(¬(z < n) ���� y = fib n

y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n ∧ 1) ∧ z ≤ n ∧ 1) ∧ z ≤ n ∧ 1) ∧ z ≤ n ∧ z < n ���� ?

8/3/2009 19

x = 0 ∧∧∧∧ y = 1 ∧ z = 0 ∧ 1 ≤ n∧ z = 0 ∧ 1 ≤ n∧ z = 0 ∧ 1 ≤ n∧ z = 0 ∧ 1 ≤ n {While ...} y = fib n

y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n {While z < n ...} y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n ∧∧∧∧ ¬(¬(¬(¬(z < n)

y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n ∧ 1) ∧ z ≤ n ∧ 1) ∧ z ≤ n ∧ 1) ∧ z ≤ n ∧ z < n {y := x + y; x := y – x; z := z + 1} y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n

? {y := x + y; x := y – x; z := z + 1} y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n

{y := x + y} y = fib (z+1) ∧ y∧ y∧ y∧ y----x = fib (z+1x = fib (z+1x = fib (z+1x = fib (z+1----1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n

{x := y - x} y = fib (z+1) ∧ x = fib (z+1∧ x = fib (z+1∧ x = fib (z+1∧ x = fib (z+1----1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n1) ∧ z + 1 ≤ n

{z := z + 1} y = fib z ∧ x = fib (z∧ x = fib (z∧ x = fib (z∧ x = fib (z----1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n1) ∧ z ≤ n

Lecture 25 – Lambda calculus

� Basic idea: minimal set of constructs needed to
implement a sequential functional language

� Need:

� Expressions: vars, abstraction (λx.e), application (e1e2)

� What we want to evaluate

� Values: closed abstractions� Values: closed abstractions

� What we want to evaluate to

� Operational semantics: β-reduction (and others, but ignore them)

� How we evaluate

� “Everything is a function”

� No constants, data structures, etc.

� Define everything as a function

8/3/2009 20

Lecture 25 – Lambda calculus

� Beta reduction (similar to function application in Ocaml)

� Replace expression (λx.e) e’ by e[e’/x]

� A.K.A. replace (fun x -> e) e’ by e, with e’ replacing any free
occurrences of x in e

� Similar to Ocaml application rule, except replace the expression
before evaluating e’ ⇓ vbefore evaluating e’ ⇓ v

� Lazy evaluation

� Example: (λx.λy.x) 1 2 Ocaml: (fun x -> fun y -> x) 1 2

� Apply beta-reduction 1:

� e = fun y -> x, e’ = 1, e[e’/y] = fun y -> x

� Apply beta-reduction 2:

� e = x, e’ = 2, e[e’/x] = 2

8/3/2009 21

Lecture 25 – Lambda calculus

let pair x y = λf. f x y

let fst p = p (λx. λy. x)

let snd p = p (λx. λy. y)

� Example: fst (pair 4 5)
= (λp. p (λx. λy. x)) ((λx. λy. λf. f x y) 4 5)= (λp. p (λx. λy. x)) ((λx. λy. λf. f x y) 4 5)

≡β (λp. p (λx. λy. x)) (λf. f 4 5)

≡β (λf. f 4 5) (λx. λy. x)

≡β (λx. λy. x) 4 5

≡β (λy. 4) 5

≡β 4

7/30/2009 22

Lecture 25 – Lambda calculus

� Church numerals

� Represent n by expression:

� Example:

n
fffffffxffxf)...))(...((.. λλλλ == ooo

� Example:

0 = λf. λx. x

1 = λf. λx. f x ≡η λf. f

2 = λf. λx. f (f x) = λf. f ᵒ f

3 = λf. f ᵒ f ᵒ f

7/30/2009 23

Lecture 25 – Lambda calculus

� Define “paradoxical combinator”

� For any f:

(apply β-reduction twice)

)) (.()) (..(Y xxfxxxfxf λλλ=

) Y(Y fff = (apply β-reduction twice)

� Consider OCaml definition:
let rec sum x = if x = 0 then 0 else x+sum(x-1)

then consider this definition:
let Sum = Y(λsum. λx. if x=0 then 0 else x+Sum(x-1))

� Note that definition of Y is not recursive.

7/30/2009 24

) Y(Y fff =

Spring 08 final – problem 2

8/3/2009 25

Spring 08 final – problem 4

8/3/2009 26

Spring 08 final – problem 5b

� Original
S → id int

| id id int

| D int

D → ε

| D $

� LL(1)� LL(1)
S → id T

| D int

T → int | id int

| D int <--- typo

D → ε

| $ D

� Does T include “D int”? No!

� Is “S -> id T | D int” left-recursive? No!

8/3/2009 27

Spring 08 final – problem 9c

� This problem is about using higher-order functions

8/3/2009 28

Spring 08 final – problem 13

� Explain “fun () -> (cnt := !cnt + 1; !cnt)”

� This is about references (lecture 22)

� () is “unit” – it is the datatype of the := operator

� := is reference assignment

� !cnt is dereference variable cnt� !cnt is dereference variable cnt

� This is a function that takes a unit as argument, and performs the
following, in order:

� Dereference cnt

� Compute (!cnt + 1)

� Store this value back in cnt

� Dereference cnt (and return its value)

8/3/2009 29

Spring 08 final – problem 10

� This deals with environment updates (lecture 18)

8/3/2009 30

Spring 08 final – problem 11

� This is an operational semantics proof in OSclo

� Similar to the lecture example given above

8/3/2009 31

Spring 08 final – problem 12a,b

� a) we didn’t cover dynamic semantics; use OSsubst or
OSclo

� b) we just apply the type rules (from the exam, not the
lecture)

8/3/2009 32

Spring 08 final – problem 14

� This is a straight-forward type proof

� Gamma implies “let x = 1 in cons x nil” has type “int list”

8/3/2009 33

Spring 08 final – problem 15

� We didn’t cover this; ignore

8/3/2009 34

Spring 08 final – problem 16

� Hoare logic problem: give invariant and prove
termination

8/3/2009 35

Outline

� Spring 08 final:

� 14-17

8/3/2009 36

