CS 421 Final Exam review session

- Outline
- Overview
- Your questions
- General
- Sample exam problems

Overview

- Format
- Comprehensive, but heavy emphasis on $2^{\text {nd }}$ half
- 2 hours (120 minutes)
- Closed-book, closed-notes
- No calculators, no phones, no computers, no talking
- No clarifications
- Content:
- MPs
- Lecture examples
- Lecture slides
- Midterm exam
- Mostly analysis + synthesis, not recall

Lecture 11-12 - Code generation

- Basic idea: given a statement or expression in the language we are compiling, generate equivalent "virtual machine" instructions
- Example: while loop (with break/continue support)

```
[ while e do S ] = let L1,L2,L3 = genlabel()
    and (I, t) = [ e ]
    in
        JUMP L2
    L1: [ S ] [3,L2
    L2: I
        CJUMP t,L1,L3
```

 L3:

Lecture 17-18 - scoping and environments

- Basic idea: which declaration of a variable name does each use of a variable name correspond to?
- OCaml - static (lexical) scope
- "Closest enclosing definition"
- Example:

```
- let x = 2
    in let }\textrm{y}=\textrm{x
        in let f z = let x=3 in y+z
            in f x
```


Lecture 17-18 - scoping and environments

- Implementing scope: environment/closure model
- Put free variables in an "environment" data structure (set of name -> value pairs)
- Update the environment as we evaluate expressions
- Closures needed for let expressions and abstraction
- Actually, let expressions are abstractions
- "let $x=a$ in $e^{"}$ is just "(fun $x->e$) $a^{\prime \prime}$
" <expr, env>
- Inside the body of the function (e)
- Get free variables from the application environment (actual arg)
- Get bound (non-free) variables from the closure environment

Lecture 17-18 - scoping and environments

- Example: (fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1) parse order:
(f a) b
$f=($ fun $x \rightarrow$ fun $y \rightarrow x y), a=(f u n y \rightarrow y 4), b=(f u n z->z+1)$
evaluation order: the same

1. evaluate (f a)
a) evaluate $a=(f u n y ~->~ 4) ~-~ c a n n o t ~ s i m p l i f y ~ f u r t h e r ~$
b) replace x by a in body of $f:$
$f^{\prime}=$ fun $y \rightarrow(f u n y->y 4) y$
c) evaluate $\mathrm{f}^{\prime}=$ fun $y->(f u n y->y 4) y$
1) replace all "free" occurences of y by ... y
2) evaluate $\mathrm{f}^{\prime \prime}=$ fun $y ~->~ y ~ 4-c a n n o t ~ s i m p l i f y ~ f u r t h e r ~$
2. evaluate (f'r b)
a) evaluate $b=(f u n z->z+1)$ - cannot simplify further
b) replace y by b in the body of $f^{\prime \prime}$: (fun $z->z+1$) 4
... $4+1=5$

Lecture 17-18 - parser combinators

- Basic idea:
- Define some basic top-down parser functions (token, epsilon, ...)
- Define higher-order functions for combining parser functions
- Build more complex parsers out of simpler parser functions
- Parser to recognize a single token:

```
let token s = fun cl -> if cl=[] then None
    else if s=hd cl then Some (tl cl)
    else None;;
let parsex = token 'x';;
```


Lecture 17-18 - parser combinators

- "Combinators" to combine parsers into larger parsers:

```
let (++) p q = fun cl -> match p cl with None -> None
                            | Some cl' -> q cl';;
let (||) p q = fun cl -> match p cl with None -> q cl
    | Some cl' -> Some cl';;
let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl
    and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;
```


Lecture 19 - function objects

- Basic idea:
- Write objects that behave like functions (stateless, n args -> 1 output, operate on other function objects, etc.)
- Implement functional programming style in imperative O-O languages
- What's involved:
" Interface - defines "type signature", e.g., int -> int -> bool
- Function object - implements the interface (body of function)
- Anonymous inner class = anonymous function (fun x -> ...)
- Operator overloading
- Rather than defining the .apply() method, redefine the () operator
- new Incr(2) instead of (new Incr).apply(2)

Lecture 19 - function objects

- Function objects in Java

```
interface IntFun {
    int apply(int x);
}
interface IntFun2 {
    int apply(int x, int y);
}
IntFun compose2 (IntFun2 f, IntFun g, IntFun h) {
    return new IntFun {
        int apply(int x) {
            return f.apply(g.apply(x), h.apply(x));
        }
    };
}
```


Lecture 20 - Proof systems

- Basic idea: build a framework for writing proofs without "handwaving"
- Should be understandable to a computer program
- Example
- Bad: x > 5, therefore $x>0$
- Good:

$$
x>5 \quad 5>0
$$

(Trans)

$$
x>0
$$

- Read: "If $(x>5)$ is true and $(5>0)$ is true, then by the Transitivity rule ($x>0$) is true."
- If $x>5$ and $5>0$ are axioms, we are done. Otherwise, prove x >5 and $5>0$.

Lecture 20 - Proof systems

- Proof system
- Judgments - logical propositions we want to test
- Judgments are boolean predicates (evaluate to true or false)
- Axioms - judgments assumed to be true without proof
- Inference rules - relations between judgments
- Proofs
- Sequence (tree) of inference rules and axioms
- Rooted at the judgment we want to prove
- Internal nodes = inference rules
- Leaves = axioms (if judgment is true)
- We are interested in two particular PSs:
- Type systems - type checking \& type inference
- Semantics - correctness

Lecture 20 - Proof systems

- Example: (fun x-> + x x) (+ 3 4) $\Downarrow 14$
- AST

app		
abstr ${ }^{\text {/ }}$		\backslash
		app
/ \|		\|
	app	+
	/ 1	11
	x x	

- Proof

Lecture 21 - type systems

- Basic idea: prove expression e has type t
- Complication: polymorphic types
- Types contain variables (notated α, β, \ldots)
- E.g., ‘a list, ('a * 'b) list, ...
- Variables can be generalized in some circumstances; types with generalized variables are written $\forall \alpha, \beta, \ldots . \tau$, and called type schemes

Lecture 21 - type systems

Application and abstraction rules are the same as in $\mathrm{T}_{\text {simp }}$. Also add rules for tuples.
(Application) $\frac{\Gamma \vdash e_{1}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1} e_{2}: \tau^{\prime}}$
(Abstraction)

$$
\frac{\Gamma[x: \tau] \vdash e: \tau^{\prime}}{\Gamma \vdash \operatorname{fun} x \rightarrow e: \tau \rightarrow \tau^{\prime}}
$$

(Tuple)

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1}^{*} \tau_{2}}
$$

Lecture 21 - type systems

let and letrec are new:

$$
\begin{array}{ll}
\text { (let) } & \frac{\Gamma \vdash e_{1}: \tau^{\prime} \quad \Gamma\left[x: G E N_{\Gamma}\left(\tau^{\prime}\right)\right] \vdash e_{2}: \tau}{\Gamma \vdash \operatorname{let} x=e_{1} \operatorname{in} e_{2}: \tau} \\
\text { (letrec) } & \frac{\Gamma\left[x: \tau^{\prime}\right] \vdash e_{1}: \tau^{\prime} \quad \Gamma\left[x: G E N_{\Gamma}\left(\tau^{\prime}\right)\right] \vdash e_{2}: \tau}{\Gamma \vdash \text { let rec } x=e_{1} \text { in } e_{2}: \tau}
\end{array}
$$

Lecture 22 - operational semantics

- Basic idea: prove expression e has value v
- Evaluate in the same order as the expression is parsed
- Structure of the AST determines structure of the proof

$$
\frac{\overline{[\mathrm{x}: 4, \mathrm{y}: 3], \mathrm{x} \Downarrow 4} \quad \overline{[\mathrm{x}: 4, \mathrm{y}: 3], \mathrm{y} \Downarrow 3}}{\mathrm{~B}=[\mathrm{x}: 4, \mathrm{y}: 3], \mathrm{x}+\mathrm{y} \Downarrow 7}
$$

$\overline{[\mathrm{x}: 4] \text {, (fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) \Downarrow<\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y},[\mathrm{x}: 4]>} \quad \overline{[\mathrm{x}: 4], 3 \Downarrow 3} \quad \mathrm{~B}$
$\mathrm{~A}=[\mathrm{x}: 4],($ fun $\mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3 \Downarrow 7$
$\overline{\varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) \Downarrow<\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3, \varnothing>} \overline{\varnothing, 4 \Downarrow 4} \quad \mathrm{~A}$
$\varnothing,($ fun $\mathrm{x} \rightarrow($ fun $\mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) 4 \Downarrow 7$

Lecture 24 - Hoare logic

- Basic idea: prove correctness of imperative programs
- Can no longer simply evaluate expressions; have sequence of statements instead
- Hoare formulas (judgments)
- P \{A\} Q
- Precondition-program-postcondition
- Hard part: finding and proving the loop invariant
- P \{ while b ... \} P \& !b
- And termination:
- Define phi(state) s.t. phi(state $\left.{ }_{i+1}\right)<$ phi $^{\left(\text {state }_{\mathrm{i}}\right)}$

Lecture 24 - Hoare logic

$$
x=0 \wedge y=1 \wedge z=0 \wedge 1 \leq n \rightarrow y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n
$$

$$
y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n \wedge \neg(z<n) \rightarrow y=\text { fib } n
$$

$$
y=\text { fib } z \wedge x=\operatorname{fib}(z-1) \wedge z \leq n \wedge z<n \rightarrow
$$

$$
?
$$

$$
\begin{array}{r}
x+y=\text { fib }(z+1) \wedge x+y-x=\text { fib }(z+1-1) \wedge z+1 \leq n \\
\{y:=x+y\} \quad y=\text { fib }(z+1) \wedge y-x=\text { fib }(z+1-1) \wedge z+1 \leq n \\
\{x:=y-x\} \quad y=\text { fib }(z+1) \wedge x=\text { fib }(z+1-1) \wedge z+1 \leq n
\end{array}
$$

$$
\{z:=z+1\} \quad y=\text { fib } z \wedge x=\operatorname{fib}(z-1) \wedge z \leq n
$$

$$
?
$$

$$
\{y:=x+y ; x:=y-x ; z:=z+1\} \quad y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n
$$

$$
y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n \wedge z<n\{y:=x+y ; x:=y-x ; z:=z+1\} \quad y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n
$$

$$
y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n \quad\{\text { While } z<n \ldots\} \quad y=\text { fib } z \wedge x=\text { fib }(z-1) \wedge z \leq n \wedge \neg(z<n)
$$

$$
x=0 \wedge y=1 \wedge z=0 \wedge 1 \leq n \quad\{\text { While } \ldots\} \quad y=\text { fib } n
$$

Lecture 25 - Lambda calculus

- Basic idea: minimal set of constructs needed to implement a sequential functional language
- Need:
- Expressions: vars, abstraction ($\lambda x . e)$, application ($\mathrm{e}_{1} \mathrm{e}_{2}$)
- What we want to evaluate
- Values: closed abstractions
- What we want to evaluate to
- Operational semantics: β-reduction (and others, but ignore them)
- How we evaluate
- "Everything is a function"
- No constants, data structures, etc.
- Define everything as a function

Lecture 25 - Lambda calculus

- Beta reduction (similar to function application in Ocaml)
- Replace expression ($\lambda x . e$) e' by e[e'/x]
- A.K.A. replace (fun $x->$ e) e' by e, with e' replacing any free occurrences of x in e
- Similar to Ocaml application rule, except replace the expression before evaluating $\mathrm{e}^{\prime} \Downarrow \mathrm{v}$
- Lazy evaluation
- Example: ($\lambda x . \lambda y . x) 12$ Ocaml: (fun $x->$ fun $y->x) 12$
- Apply beta-reduction 1 :
- e = fun $y->x, e^{\prime}=1$, e[$\left.e^{\prime} / y\right]=$ fun $y->x$
- Apply beta-reduction 2 :
- e = x, é $=2$, $e\left[e^{\prime} / x\right]=2$

Lecture 25 - Lambda calculus

```
let pair x y = \lambdaf. f x y
let fst p = p (\lambdax. \lambday. x)
let snd p = p (\lambdax. \lambday. y)
```

- Example: fst (pair 4 5)

```
\(=(\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x))((\lambda x \cdot \lambda y \cdot \lambda f \cdot f x y) 45)\)
\(\equiv_{\beta}(\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x))(\lambda f \cdot f 45)\)
\(\equiv_{\beta}\) ( \(\lambda \mathrm{f}\). f 4 5) ( fx . \(\lambda y \cdot x\) )
\(\equiv_{\beta}(\lambda x \cdot \lambda y \cdot x) 45\)
    \(\equiv_{\beta}(\lambda y \cdot 4) 5\)
    \(\equiv_{\beta} 4\)
```


Lecture 25 - Lambda calculus

- Church numerals
- Represent n by expression:

$$
\lambda f \cdot \lambda x \cdot f(f(\ldots(f x) \ldots))=\lambda f \cdot f \circ f \circ \ldots \circ f=\lambda f \cdot f^{n}
$$

- Example:

```
0 = \lambdaf. \lambdax. x
1 = \lambdaf. \lambdax. f x # #n \lambdaf. f
2 = \lambdaf. \lambdax. f (f x) = \lambdaf. f of
3 = \lambdaf. f \circ f \circ f
```


Lecture 25 - Lambda calculus

- Define "paradoxical combinator"

$$
\mathrm{Y}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- For any f:

$$
\mathrm{Y} f=f(\mathrm{Y} f) \quad \text { (apply } \beta \text {-reduction twice) }
$$

- Consider OCaml definition:

```
let rec sum x = if x = 0 then 0 else x+sum(x-1)
```

then consider this definition:
let $\operatorname{Sum}=Y(\lambda \operatorname{sum} . \lambda x$. if $x=0$ then 0 else $x+\operatorname{Sum}(x-1))$

- Note that definition of Y is not recursive.

Spring 08 final - problem 2

```
type stmt = Assign of string * expr
    | If of expr * stmt * stmt
    | While of expr * stmt
    | Block of stmt list
and expr = Var of string | Const of int
    | Plus of expr * expr | Less of expr * expr | Not of expr
```

Write a function trans: stmt \rightarrow stmt that makes the following transformations:

- if (!e) then $s 1$ else $s 2 \Rightarrow$ if (e) then $s 2$ else s1
- $\{s\} \Rightarrow s$ (i.e. a block with a single statement doesn't need to be a block)

These transformations should be performed recursively throughout the term - inside the body of a while, the statements in a block (as well as the block itself), and the true and false branches of an if (as well as the if itself).

```
let rec transform s = match s with
    Assign(x,e) -> s
    If(Not e,s1,s2) -> If(e, transform s2, transform s1)
    If(e,s1,s2) -> If(e, transform s1, transform s2)
    While(e,s) -> While(e, transform s)
    Block [s] -> transform s
    Block sl -> Block (map transform sl);
```


Spring 08 final - problem 4

```
type expr = Int of int | Add of expr * expr
let rec fold (f,g) e = match e with
    Int i -> f i
    | Add(e1,e2) -> g (fold (f,g) e1, fold (f,g) e2)
```

fill in the blanks in the following OCaml session. (Recall that string_of_int is the OCaml function to convert an int to a string.):

```
val e1 = Add(Int 3, Add(Int 4, Int 5))
let evaluate e = fold (_(fun n -> n)
```

\qquad

``` ,
        _(fun (x,y) -> x+y)__) e;;
evaluate e1;;
-: int = 12
let prettyprint e = fold
```

\qquad

```
        string_of_int
```

\qquad

``` ,
```

\qquad

``` ) e; ;
```

 fun (x,y) -> "("^x^"+"^y^")"
    ```
            fun (x,y) -> "("^x^"+"^y^")"
prettyprint e1;;
prettyprint e1;;
-: string = "(3+(4+5))"
```

-: string = "(3+(4+5))"

```

\section*{Spring 08 final - problem 5b}
- Original
\(S \rightarrow\) id int
| id id int
| D int
D \(\rightarrow \varepsilon\)
| D \$
- LL(1)
\(S \rightarrow\) id \(T\)
| D int
\(T \rightarrow i n t \mid i d i n t\)
| D int <--- typo
D \(\rightarrow \varepsilon\)
| \$ D
- Does T include "D int"? No!
- Is "S -> id T | D int" left-recursive? No!

\section*{Spring 08 final - problem 9c}
- This problem is about using higher-order functions
```

let rec fold_right f lis accu =
match l\overline{is with}
[] -> accu
| h::t -> f h (fold_right f t accu)

```

Write the following OCaml functions:
(c) graph_fun: \((\alpha \rightarrow \beta) \rightarrow \alpha\) list \(\rightarrow\left(\alpha^{*} \beta\right)\) list, where graph_fun \(f[x 1 ; x 2 ; \ldots ; x n]=[(x 1, f\) x1); (x2, fx2); ...]
```

let rec graph_fun f x =
if x=[] then [] else (hd x, f (hd x)):: graph_fun f (tl x)

```

\section*{Spring 08 final - problem 13}
- Explain "fun () -> (cnt := !cnt + 1; !cnt)"
- This is about references (lecture 22)
- () is "unit" - it is the datatype of the := operator
- := is reference assignment
- !cnt is dereference variable cnt
- This is a function that takes a unit as argument, and performs the following, in order:
- Dereference cnt
- Compute (!cnt + 1)
- Store this value back in cnt
- Dereference cnt (and return its value)

\section*{Spring 08 final - problem 10}
- This deals with environment updates (lecture 18)
```

 let x = 4;;
 \rho}0: { {x->4
 let fy= fun z -> x + y + z;;
 \rho
    ```
    let \(\mathrm{x}=8\);
    \(\rho_{2}: \rho_{1}[x \rightarrow 8]\)
    let \(\mathrm{g}=\mathrm{f} 6\);
    \(\rho_{3}: \quad \rho_{2}\left[g \rightarrow<z, x+y+z, \rho_{0}[y \rightarrow 6]>\right]\)
    let \(\mathrm{x}=\mathrm{g} \mathrm{x}\); ;

\section*{Spring 08 final - problem 11}
- This is an operational semantics proof in OSclo
- Similar to the lecture example given above

\section*{Spring 08 final - problem 12a,b}
- a) we didn't cover dynamic semantics; use OSsubst or OSclo
- b) we just apply the type rules (from the exam, not the lecture)
a. Give a dynamic semantics rule for this expression:
\[
\rho, e_{1} \Downarrow v_{1} \quad \rho\left[x \rightarrow v_{1}\right], e_{2} \Downarrow v_{2} \quad \rho\left[x \rightarrow v_{1}, y \rightarrow v_{2}\right], e \Downarrow v
\]
\[
\rho, \text { let } x=e 1 \text { then } y=e 2 \text { in } e \Downarrow_{\mathrm{v}}
\]
b. Give a type rule for this expression (in the non-polymorphic type system):
\begin{tabular}{|c|c|c|}
\hline \(\Gamma \mid-e 1: \tau_{1}\) & \(\Gamma\left[\mathrm{x}: \tau_{1}\right] \mid-\mathrm{e}: \tau_{2}\) & \(\Gamma\left[\mathrm{x}: \tau_{1}, \mathrm{y}: \tau_{2}\right] \mid-\mathrm{e}: \tau\) \\
\hline & |- let \(\mathrm{x}=\mathrm{e} 1 \mathrm{t}\) & \(y=e 2\) in e: \(\tau\) \\
\hline
\end{tabular}

\section*{Spring 08 final - problem 14}
- This is a straight-forward type proof
" Gamma implies "let x = 1 in cons x nil" has type "int list"
\[
\Gamma=\{\text { cons: int } \rightarrow \text { int list } \rightarrow \text { int list, nil: int list }\} .
\]

Give the proof tree for the type judgment below, using the lines provided. On each line, give the name of the inference rule being used. Recall that axioms have a line with nothing above it. The axioms and rules of inference for the system are given at the end of the exam.

Variable \(\qquad\)
\(\qquad\) Variable \(\qquad\)
\(\underline{\Gamma[x: i n t]} \mid\) cons \(:\) int \(\rightarrow\) int list \(\rightarrow\) int list \(\quad \underline{\Gamma x: i n t] ~} \mid \underline{x}: \overline{i n t}\) App \(\qquad\) _Variable _
\(\underline{\Gamma[x: i n t] ~} \mid-\) cons \(\mathrm{x}:\) int list \(\rightarrow\) int list \(\quad \underline{\Gamma} \mathrm{x}:\) int] \(\mid-\mathrm{nil}:\) int list
\(\qquad\)
 App
\(\underline{\Gamma} \mid 1:\) int \(\quad \underline{\Gamma x}:\) int \(\mid\) cons \(x\) nil :int list
\(\Gamma \mid-\) let \(\mathrm{x}=1\) in cons x nil : int list

\section*{Spring 08 final - problem 15}
- We didn't cover this; ignore

\section*{Spring 08 final - problem 16}
- Hoare logic problem: give invariant and prove termination
```

i = 0; j = n-1;
while (i < j) {
if (a[i] <= x)
i = i+1;
else if (a[j] > x)
j = j-1;
else {
temp = a[i]
a[i] = a[j]
a[j] = temp
i = i+1
j = j-1
}
}

```
(a) Give the loop invariant for the loop.
\[
\exists \mathrm{i}, \mathrm{j} \cdot(0 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n} \wedge(\forall \mathrm{~m} .0 \leq \mathrm{m}<\mathrm{i} \Rightarrow \mathrm{a}[\mathrm{~m}] \leq \mathrm{x})
\]
\[
\wedge(\forall \mathbf{m} . \mathbf{j} \leq \mathbf{m}<\mathbf{n} \Rightarrow \mathbf{a}[\mathbf{m}]>\mathbf{x}))
\]
(b) Give a well-founded ordering on the variables that proves the termination

Numerical ordering on j-i. (Declines on every iteration; cannot \(g\)
The correctness formula for this statement is:
```

true { i=0; j=n-1; while ... } \existsk. (0\leqk\leqn-1
\wedge(\forall\textrm{m}.0\leq\textrm{m}<\textrm{k}=>\textrm{a}[\textrm{m}]\leq\textrm{x})
\wedge(\forall\textrm{m}.\textrm{k}<\textrm{m}<\textrm{n}=>\textrm{a}[\textrm{m}]>\textrm{x}))

```

\section*{Outline}
- Spring 08 final:
- 14-17```

