CS 421 Final Exam review session

= Qutline
= Qverview

= Your questions
= General
= Sample exam problems

8/3/2009 1

Overview

= Format
= Comprehensive, but heavy emphasis on 2" half
2 hours (120 minutes)
Closed-book, closed-notes
No calculators, no phones, no computers, no talking
No clarifications

= Content:
= MPs
= Lecture examples
= Lecture slides
= Midterm exam
= Mostly analysis + synthesis, not recall

8/3/2009

Lecture 11-12 — Code generation

R,

= Basic idea: given a statement or expression in the
language we are compiling, generate equivalent “virtual
machine” instructions

= Example: while loop (with break/continue support)

[while e do S] = let L1,L2,L3 = genlabel ()
and (I, t) = [e]
in
JUMP L2
Ll1: [S Jis3,12
L2: I

CJUMP t,L1,L3
L3:

8/3/2009 3

Lecture 17-18 — scoping and environments

= Basic idea: which dgeclaration of a variable name does
each use of a variable name correspond to?

= OCaml — static (lexical) scope
= “Closest enclosing definition”

= Example:

- let x = 2
in let y = x
in let f z = let x=3 1in y+z

in £ x

8/3/2009

Lecture 17-18 — scoping and environments

= Implementing scope: environment/closure model

= Put free variables in an “environment” data structure (set of
name -> value pairs)

= Update the environment as we evaluate expressions

= Closures needed for let expressions and abstraction
= Actually, let expressions agre abstractions
= “letx=aine” isjust“(funx ->e) a”
= <expr, env>

= Inside the body of the function (e)
= Get free variables from the application environment (actual arg)
= Get bound (non-free) variables from the closure environment

8/3/2009

Lecture 17-18 — scoping and environments

= Example: (fun x -> fun vy -> x y) (fun y -> vy 4) (fun z -> z+1)
parse order:
(f a) b
f = (fun x > funy > xvy), a= (funy ->vy 4), b= (fun z -—> z+1)

evaluation order: the same
1. evaluate (f a)
a) evaluate a = (fun y -> y 4) - cannot simplify further
b) replace x by a in body of f:
f’" = fun y —> (funy —> vy 4) y
c) evaluate £’/ = funy —> (funy -> vy 4) vy
1) replace all “free” occurences of y by ..y
2) evaluate £’’’ = fun y -> yv 4 - cannot simplify further
2. evaluate (f’’ Db)
a) evaluate b = (fun z -> z+1l) — cannot simplify further
b) replace y by b in the body of f£’’: (fun z —-> z+1) 4
. 4+1 = 5

8/3/2009 6

Lecture 17-18 — parser combinators

R,

= Basic idea:
= Define some basic top-down parser functions (token, epsilon, ...)
= Define higher-order functions for combining parser functions
= Build more complex parsers out of simpler parser functions

= Parser to recognize a single token:

let token s = fun ¢l -> if cl=[] then None
else 1if s=hd cl then Some (tl cl)

else None; ;

let parsex = token “‘x’;;

8/3/2009 7

Lecture 17-18 — parser combinators

= “Combinators” to combine parsers into larger parsers:

let (++) p g = fun cl -> match p cl with None -> None

| Some cl' —> g cl';;
let (||) p g = fun ¢l -> match p ¢l with None -> g cl
| Some cl' —-> Some cl';;
let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl
and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

8/3/2009 8

Lecture 19 — function objects

= Basic idea:

= \Write objects that behave like functions (stateless, n args -> 1
output, operate on other function objects, etc.)

= Implement functional programming style in imperative O-O
languages

= What's involved:
= Interface — defines “type signature”, e.q., int -> int -> bool
= Function object — implements the interface (body of function)
= Anonymous inner class = anonymous function (fun x -> ...)

= QOperator overloading
= Rather than defining the .apply() method, redefine the () operator
= new Incr(2) instead of (new Incr).apply(2)

8/3/2009

Lecture 19 — function objects

= Function objects in Java

interface IntFun {

int apply(int x);
) In Ocami:

interface IntFun2 {

int apply(int x, int y); let compose2 f g h = fun x —> f(g x, h x)

IntFun compose?2 (IntFun2 f, IntFun g, IntFun h) {
return new IntFun ({
int apply(int x) {

return f.apply(g.apply(x), h.apply(x));

b6

8/3/2009 10

Lecture 20 — Proof systems

= Basic idea: build a framework for writing proofs without
“handwaving”

= Should be understandable to a computer program

= Example
= Bad: x > 5, therefore x > 0
= Good:
Xx>5 5>0
(Trans) -=----====mmmmmm-
X >0

= Read: “If (x > 5) is true and (5 > 0) is true, then by the
Transitivity rule (x > 0) is true.”

= If x> 5and5 > 0 are axioms, we are done. Otherwise, prove X
>5and 5 > 0.

8/3/2009

11

Lecture 20 — Proof systems

= Proof system

= Judgments — logical propositions we want to test
= Judgments are boolean predicates (evaluate to true or false)

= Axioms — judgments assumed to be true without proof
= Inference rules — relations between judgments

= Proofs
= Sequence (tree) of inference rules and axioms
= Rooted at the judgment we want to prove
= Internal nodes = inference rules
= Leaves = axioms (if judgment is true)

= We are interested in two particular PSs:
= Type systems — type checking & type inference
= Semantics — correctness

8/3/2009

12

Lecture 20 — Proof systems

= Example: (funx-> +xx)(+34) ! 14

= AST
app
[\
abstr app
/| |
X app +
[\ /\
X X 3 4
= Proof
(const) =----- —m-me-
303 444 3+447
(delta) ------=mmmmmmmmmmemeeeeeee
(+34)47
(ApP) =--mmmmmmmmm

(funx->+xx)(+34) U 14

8/3/2009 13

Lecture 21 — type systems

= Basic idea: prove expression e has type ¢
= Complication: polymorphic types

= Types contain variables (notated o, B, ...)
= E.g., ‘alist, (a *'b) list, ...

= Variables can be generalized in some circumstances;
types with generalized variables are writtenva, B, 1,
and called type schemes

8/3/2009

14

Lecture 21 — type systems

R,

Application and abstraction rules are the same as in Tg,.
Also add rules for tuples.

(Application) I'-e 77 I'~e,:7
['ee,:T
° I__ . !
(Abstraction) I'[x:7]~e:7
I'~funx s e:7—>7
(Tuple) ['+e :7 Te,:7,

I'—C(e,e,):7,*T,

8/3/2009 15

Lecture 21 — type systems

I —

let and letrec are new:

(let) I'e : T ITx:GENp(T')]~e,: T
I'Hletx=e¢/1ne,:7

(letrec) I[x:7']e : 7T ITx:GEN.(T")]+e,:T
I'+letrecx=e 1ne,: 7

8/3/2009 16

Lecture 22 — operational semantics

I —

= Basic idea: prove expression e has value v
= Evaluate in the same order as the expression is parsed
= Structure of the AST determines structure of the proof

[x:4,v:3], x4 [x4,y:3],yl3

B = [x:4,y:3], x+y U 7

[x:4], (funy — x+y) U <fun y—x+y,[x4]> [x4],3103 B
A= [x4],(funy — x+y)3 L 7

D, (funx — (funy — x+y)3) I <fun x — (funy — x+y)3,0> @,414 A
D, (fun x — (funy — x+y)3)4 | 7

8/3/2009 17

Lecture 24 — Hoare logic

= Basic idea: prove correctness of imperative programs

= Can no longer simply evaluate expressions; have sequence of
statements instead

= Hoare formulas (judgments)
- P{A}Q

= Precondition-program-postcondition

= Hard part: finding and proving the loop invariant
« P{whileb..}P&!b

= And termination:
= Define phi(state) s.t. phi(state;,;) < phi(state;)

8/3/2009

18

Lecture 24 — Hoare logic

X=0AYy=1AZz=0A1=sn=> y=fibzAx=fib(z-1)Az<n
y=fibzAx=fib(z-1)AzsnA(z<n)=> y=fibn

y=fibzAx=fib(z-1)AzsnAz<n=> ?

x+Yy = fib (z+1) A x+y-x=fib (z+1-1)Az+1<n
{y :=x+y} y=fib(@z+1)Ayx=fib(z+1-1)Az+1<n
{x:=y-Xx} y=fib(z+1)Ax=fib(z+1-1)Az+1<n

{z:=z+1} y=fibzAx=fib(z-1)Az<n

? {y=x+y;X:=zy—X;z2:=2+1} y=fibzax=fib(z-1)Az<n

y=fibzAx=fib(z-1)AzsnAz<n {y:=X+y;X:i=y—-X;2:=2+1} y=fibzAax=fib(z-1)Az<n

y=fibzAx=fib(z-1)Azsn {Whilez<n..} y=fibzAx=fib(z-1)Az<snA(z<n)

X=0Ay=1Az=0A1=n {While...} y=fibn
8/3/2009 19

Lecture 25 — Lambda calculus

= Basic idea: minimal set of constructs needed to
implement a sequential functional language

= Need:

= Expressions: vars, abstraction (Ax.e), application (e,e,)
= What we want to evaluate

= Values: closed abstractions
= What we want to evaluate o

= QOperational semantics: p-reduction (and others, but ignore them)
= How we evaluate

= “Everything is a function”
= No constants, data structures, etc.
= Define everything as a function

8/3/2009

20

Lecture 25 — Lambda calculus

= Beta reduction (similar to function application in Ocaml)
= Replace expression (Ax.e) e’ by e[e’/x]

= A.K.A. replace (fun x -> e) e’ by e, with e’ replacing any free
occurrences of x in e

= Similar to Ocaml application rule, except replace the expression
before evaluating e’ | v

= Lazy evaluation

= Example: (Ax.Ay.x) 1 2 Ocaml: (funx->funy->x) 12
= Apply beta-reduction 1:
=e=funy->x e =1, eely] =funy -> x
= Apply beta-reduction 2:
=e=X e =2, ¢ee/x] =2

8/3/2009

21

Lecture 25 — Lambda calculus

let pair x vy = Af. £ x vy
let fst p =
let snd p =

- Example: fst (pair 4 5)

(Ap. P (Ax. Ay. X)) ((Ax. Ay. Af. £ x y) 4 5)
. p (Ax. Ay. x)) (ANf. £ 4 5)

Af. £ 4 5) (Ax. Ay. X)

AX. Ay. x) 4 5

. 4) 5

@III
>
O

Il
o]

Il
o] o]
IaN — — —
>
K

™

7/30/2009 22

Lecture 25 — Lambda calculus

= Church numerals
= Represent 1 by expression:

A Al O N=A fofo.of=Af"

= Example:
0 = Af. AxX. X
1 = Af. Ax. fXEn)\f. f
2 = Af. Ax. £ (f x) = Af. £ o f
3 =Af. £ o f o f

7/30/2009 23

Lecture 25 — Lambda calculus

R,

= Define “paradoxical combinator”
Y =Af .(Ax.f (x x)) (Ax. f (x X))

= For any f:
Y f=f(Y f) (apply B-reduction twice)

= Consider OCaml definition:

let rec sum x = 1f x = 0 then 0 else x+sum(x—-1)

then consider this definition:
let Sum = Y (Asum. Ax. 1f x=0 then 0 else x+Sum(x-1))

= Note that definition of Y is not recursive.

7/30/2009 24

Spring 08 final — problem 2

type stmt = Assign of string * expr
| If of exXpr * stmt * stmt
| While of expr * stmt

|

Block of stmt list

and expr = Var of string | Const of int
| Plus of expr * expr | Less of eXpr * expr | Not of expr

Write a function trans: stmt — stmt that makes the following transformations:

« 1f (!2) then sl else 32 = 1f (e) then =52 =lse sl
s [=} = s (i.e. a block with a2 single statement doessn’t nesed
to be a block)

These transformations should be performed recursively throughout the term — inside the body
of a while. the statements in a block (as well as the block 1tself). and the true and false branches
of an 1f (as well as the if itself).

let rec transform = = match = with

Assign(x,e) -> =

If(Not e,21,=22) -> If(e, transform s2, transform =1)
If(e,sl,s2) -> If(e, transform sl, transform s2)
While(e,s) -> While(e, transform s)

Block [=2] -> transform =

Blcock sl -> Block (map transform sl) ;

8/3/2009 25

Spring 08 final — problem 4

type expr = Int of int | 2Add of expr * expr
let rec fold (f,g) & = match & with

Int 1 -> f 1
| 2dd(el,eZ} -> g (fold (f,qg) el, fold (f,qg) e2)

fill in the blanks in the following OCaml session. (Recall that string of int is the OCaml
function to convert an int to a string.):

val el = RAdd(Int 3, Add{Int 4, Int 35))

let evaluate = = fold {_ﬁfun n =-> n) .

_(fun (x,y) -> x+y)) e

evaluate el;;
-: int = 12
let prettyprint e = fold

{ string of int .

fun {ny] _} T {"ﬁxﬁ"+"ﬁ?ﬁ”}" ::I e:;
prettyprint el;;
-: string = " (3+(4+5))"

8/3/2009 26

Spring 08 final — problem 5b

= QOriginal

S - id int
| id id int
| D int

| D S

= LL(1)
S - 1d T
| D int
T - int | id int
| D int <-—- typo
D - ¢

| $ D

Does T include "D int”? No!
Is“S->id T | D int” left-recursive? No!

8/3/2009 27

Spring 08 final — problem 9c

= This problem is about using higher-order functions

let rec fold right £ lis accu =
match lis with
[] -» accu
| h::t -> £ h (fold right £ t accu)

Write the following OCaml functions:
(¢) graph_fun: (a— p) = o list = (a * B) list, where graph fun f[xI; x2; ...; xn] = [(x1, f

x1); (x2, fx2);..]

let rec graph fun £ x =
if x=[] then [] else (hd x, £ (hd x)):: graph fun £ (tl x)

8/3/2009 28

Spring 08 final — problem 13

R,

= Explain “fun () -> (cnt := lent + 1; lent)”

= This is about references (lecture 22)
= () is "unit” — it is the datatype of the := operator
= = s reference assignment
= lcnt is dereference variable cnt

= This is a function that takes a unit as argument, and performs the
following, in order:
= Dereference cnt
= Compute (cnt + 1)
= Store this value back in cnt
= Dereference cnt (and return its value)

8/3/2009 29

Spring 08 final — problem 10

= This deals with environment updates (lecture 18)

let x = 4:;

po: {(x—= 4}

letty=tfunz->x+y+z:

p1: poff > <y, z->x+y+z po~]

let x =8::

P2 p1[x—8]

let g =16

p3: pag—=z. x +y+z po[y—0]-]

let x = g x::

8/3/2009 P4t p3[x—18] 30

Spring 08 final — problem 11

= This is an operational semantics proof in OSclo
= Similar to the lecture example given above

8/3/2009 31

Spring 08 final — problem 12a,b

I —

= a) we didn’t cover dynamic semantics; use OSsubst or
OSclo

= b) we just apply the type rules (from the exam, not the
lecture)

a. Give a dynamic semantics rule for this expression:

P2 Uv, plx—v,], e2 U, pP[E—2Vy YV, € Uv

p.let x = el then y = 2 in ellv
b. Give a type rule for this expression (in the non-polymorphic type system):

T | oel:r, I'[x: 4] | e2:1, I[x: Ty, ¥ T3] L e:n

I | let x = el then vy = €2 in et

8/3/2009 32

Spring 08 final — problem 14

I —

= This is a straight-forward type proof
= Gamma implies “let x = 1 in cons x nil” has type “int list”

I'= {cons: int — int list — nt list. ml: it list },

Give the proof tree for the type judgment below. using the lines provided. On each line, give
the name of the mference rule being used. Recall that axioms have a line with nothing above 1t.
The axioms and rules of inference for the system are given at the end of the exam.

Variable Variable
[[x:int] - cons :int — int list = int list T'[x:int] - x :int
App Variable

I[[x:int] | consx :int list — int list [[x:int] | nil :int list
Const App

' - 1:nt I'[x:int] | cons x nil : int list

Let

I' - letx =1 incons x mil : int list

8/3/2009 33

Spring 08 final — problem 15

= We didnt cover this; ignore

8/3/2009 34

Spring 08 final — problem 16

= Hoare logic problem: give invariant and prove
termination

i=0;3=n-1;
while (i < 3) {
if (ali] <= x) 3, j.(0<i<j<n A(Vm.0<m<i= a[m] <x)

i=i+1; . . -
else if (a[j] > x) A (Vm. j <m < n = a[m] > x))

i = 3j-1;
else {
temp
af[i]
alj]
i
J

(a) Give the loop invariant for the loop.

a[i]
al3]
temp

L+ 1 nn

i
3

i (b) Give a well-founded ordering on the variables that proves the termination

}

Numerical ordering on j-i. (Declines on every iteration: cannot g
The correctness formula for this statement is:
true { i=0; j=n-1; while ... } Jk. (0 =k <n-1

A(Vm 0<m<k= a[m] £x)
A (Vm k<m <n= a[m] > x))

8/3/2009 35

Outline

= Spring 08 final:
= 14-17

8/3/2009 36

