
ActorNet: Actor Language for
Wireless Sensor Networks

Slides by: YoungMin Kwon

Kirill Mechitov

Network Embedded Systems

� Low-power, inexpensive embedded
processors cannot perform very complex
tasks

� But a network of such systems can be very
powerful

� Example: sensor networks
� Each processor is equipped with a sensor

� Becomes a “smart” sensor node

Wireless Sensor Networks

� Data from multiple sensors is processed and
combined into “big picture”

� Sensor coverage
� Sensors can be deployed to cover a large area

� Reliability
� Redundant sensor readings
� Resiliency to failure of individual sensors

� Cost
� Many inexpensive sensors can be cheaper than one
powerful sensor

WSN in the lab

WSN in the Field

WSN Environment

Large-scale systems where:

� Nodes and links have limited capabilities.

� Real-time requirements must be met in the
absence of a predefined global clock.

� Faults are common.

failures

Delays

ActorNet

� Easy to program

� High level language (scheme like)

� High level operations (e.g. send message)

� Efficient network programming

� Reprogramming already deployed nodes is very
difficult.

� Deluge: replace every program image in the network

� ActorNet: migrating actor can run on selected nodes

ActorNet

� Interpreter
� Provides a uniform computing environment
regardless of H/W, O.S. differences.

� Mica2, PC,…

� Mobility
� Avoid data collection

� Efficient way of sampling a sensor network

� Easily cope with changing requirements on the
fly

Software Architecture

Actor ActorActor

Comm. DriverGarbage Collecgtor

VM Driver

App. Level Context Switcher

TinyOS

Mica2 Hardware

Interpreter

. . . .

Problems in WSN application
development

� Small Memory

� 4KByte of SRAM

� 128KByte of program Flash

� 512KByte of serial Flash (fast read/slow write)

� All applications as well as TinyOS share the
4KB SRAM

� ActorNet provides 56KBytes of virtual memory
space

� A page structure

� 1 KByte (8 pages) of SRAM is used as a cache for
the VM (LRU swapping policy)

� Lock/Unlock mechanism enables direct memory
operation on cached pages

Virtual Memory

dirty bit/
reservedBit mapData

112 byte 14 byte 2 byte

Garbage Collector

� Mark and Sweep garbage collector
� Mark phase does not take long time if memory is lightly
loaded

� Sweep phase takes long time: it scans entire VM space

� Divide VM into multiple segments
� Each sweep step scans only one segment
� Reduce average delay in GC
� Helps increase the communication speed

� 0.1 packet/sec -> 2 packet/sec

� Allocated memory between mark and sweep
� 2 alternating bit marking
� New memories are reserved with current mark bit set

Network Structure

� Forwarder

� Link between repeaters
and Actors on PC

� TCP/IP

� Repeater

� Link between WSN and
the Internet

� AdHoc network

� An actor can migrate
to different network

Interpreter (Scheme like)

� Preorder expression

� (add 1 2 3) : 6

� (sub 1 2 3) : -4

� Conditional

� (cond (ge x 0)
x
(sub 0 x)) : | x |

Function

� Function definition

� (lambda (x)
(add x 1)) :increase function

� Function application

� ((lambda (x)
(add x 1))

2) : 3

High-order function

� Let a function DF be
(lambda (f)
(lambda (x)
(div (sub (f (add x 0.01)) (f x))

0.01)))

� Let fx be (lambda (x) (mul x x))

� Let dfdx be (DF fx)

� (dfdx 5) = 10.01 ~ 10

Recursion

� Summation function: 1+2+…+x
� ((lambda (f)

(lambda (x)
(f f x)))

(lambda (sum x)
(cond (equal x 1)
1
(add x (sum sum (sub x 1))))))

� (rec (sum x)
(cond (equal x 1)
1
(add x (sum (sub x 1)))))

List structure

� example

� (cons 1 2) : a pair of 1, 2

� (car (cons 1 2)) : 1

� (cdr (cons 1 2)) : 2

� (cons 1 (cons 2 (cons 3 nil))) ≡ (list 1 2 3)

� (caddr (list 1 2 3)) ? : 2

� Program is also a list type data

� (add 1 2 3) ≡ (eval (list add 1 2 3))

Continuation

� Continuation: an abstraction of the rest of
the computation

� (add 1 | 2) :
| ≡ (lambda (x) (add x 1))

� (add 1 | (sub 2 | (mul 3 | 4)) :
| ≡ (lambda (x) (add x 1)) ≡ c1
| ≡ (lambda (x) (c1 (sub x 2))) ≡ c2
| ≡ (lambda (x) (c2 (mul x 3)))

Multi Threading

� A thread’s state:
� a pair of a continuation and a value that will be
passed to the continuation

� Multi threading
� Manages a list of continuation/value pairs

� Evaluate each pair for a while and switch to the
next pair: trampolining

� Each thread (actor) has a unique id and its
own message queue

Creating Actors

� (seq (print 1) (print 2))

� Sequentially evaluates (print 1) and (print 2)

� Returns 2 which is the value of the last expression.

� (par (print 1) (print 2))

� Makes two actors that print 1 and 2

� The expression returns a list of ids of created actors

� New actor states do not have their parent’s
continuation stack

Send/Receive Messages

� Message

� A list that begins with a receiver id

� 0 for the receiver id means broadcast

� (send (list 100 1 2 3))

� Send a list of (1 2 3) to actor-100

� Contents will be deep copied

� (send (list 100 x)): sends everything reachable from x

� (msgq) returns a list of messages in reverse order

� (cadr (msgq)) returns the last message

� (setcdr (msgq) (cddr (msgq))) deletes the last message

Actor migration

� Obtaining an actor’s continuation (callcc)

� (add 1
(callcc
(lambda (cc) (cc 2)))) : 3

� Actor migration means moving its state
(continuation/value pair) to another
platform

Actor migration

� (lambda (adrs val) ;migrate function
(callcc (lambda (cc)

(send adrs cc val))))

� (add x (migrate 100 y) z)

� Evaluate x and y

� Migrate to node 100

� Evaluate z and add the values of x, y and z at
node 100

I/O operations

� (io 0) : hardware ID

� (io 1) : temperature reading

� (io 2) : brightness reading

� (io 3) : clock ticks from the power up

� 1 tick ~ 0.1 sec

