
CS 421 Lecture 25: Parallel programming and
functional languages

� Lecture outline

� Why parallel programming is hard

� Why functional programming helps

� Two case studies

� Google’s MapReduce

� F#’s asynchronous workflows� F#’s asynchronous workflows

8/3/2009 1

Why parallel programming is hard

� Dependencies

� Race conditions

� Deadlock� Deadlock

8/3/2009 2

Granularity of parallelism

� Instruction-level parallelism

� “Fine grained”

� Higher-level parallelism

� “Coarse grained”

8/3/2009 3

Approaches to parallel programming

� Automatic parallelization, i.e., parallelizing compilers

� Manual parallelization – low-level

� MPI, OpenMP

� Manual parallelization – high-level

� Languages incorporate abstract models of parallelism

� Libraries implement models of parallelism

8/3/2009 4

Problem

� Automatic parallelization may not know how to take
advantage of high-level information

� Must rely only on logical dependencies to parallelize code

� Manual parallelization has a scalability problem

� A few threads – OK

� What about multicore processors? 8, 16, …, 1024 cores?

� Also, hard to keep track of all dependencies – high bug potential

8/3/2009 5

Why functional languages help

� Reduce number of dependencies

� Makes both automatic and manual methods easier

� E.g., in application of map function, applications of
function to each element are usually independent:

8/3/2009 6

Why functional languages help

“Due to the absence of side-effects in a purely functional

program, it is relatively easy to partition programs so that

sub-programs can be executed in parallel: any computation

which is needed to produce the result of the program may be

run as a separate task. …

“Higher-order functions (functions which act on functions)

can also introduce program-specific control structures, which

may be exploited by suitable parallel implementations.”

- Kevin Hammond, www-
fp.dcs.stand.ac.uk/~kh/papers/pasco94/pasco94.html

8/3/2009 7

Why functional languages help

� Consider imperative and functional implementations of
quicksort

� Imperative
qsort(a, lo, hi):

p = choose pivot, move to a[lo]

partition (a, lo+1, hi, pivot)

qsort(a, lo+1, (lo+hi)/2)qsort(a, lo+1, (lo+hi)/2)

qsort(a, (lo+hi)/2+1, hi)

� Functional
qsort(lis):

p = choose pivot, remove from lis

l = qsort (filter (< p) lis)

u = qsort (filter (>= p) lis)

l @ [p] @ u

8/3/2009 8

Two case studies

� Google’s MapReduce

� Parallelism in processing large amounts of data from multiple
processors in a data center

� Library-based model of parallelism

� Microsoft’s F# w/ asynchronous workflows� Microsoft’s F# w/ asynchronous workflows

� Programming model for parallelism in functional language

8/3/2009 9

Google’s MapReduce

� Used to access data from Google’s data centers.

� Inspired by map and reduce (fold) operations:

� Divide calculation into two parts:

� map – apply function to data independently on a set of processors

� reduce – combine results of map operations

� Available to public in “Hadoop” implementation� Available to public in “Hadoop” implementation

� More info: Dean & Ghemawat, “MapReduce: Simplified
data processing in large clusters”

8/3/2009 10

Google’s MapReduce

� User defines (usually in C++) functions map and reduce:
map: string * string -> (string * string) list

reduce: string * (string list) -> string list

� map is executed on a collection of processors, producing
a list of (key, value) pairs on eacha list of (key, value) pairs on each

� The underlying MapReduce library combines these pairs,
groups and sorts by key, then calls reduce for each key,
giving all the values associated with that key. It returns
the combined list of all values returned from these calls.

8/3/2009 11

Word-counting

� map (string docname, string doccontents):

for each word w in doccontents:

emit (w, “1”)

� reduce (string word, list<string> counts):

int result = 0

for each n in counts:for each n in counts:

result := parseInt(n)

emit([“”+result])

� User also supplies mapreduce specification object telling
system how to get started (e.g., document names to
apply map to)

8/3/2009 12

F#’s asynchronous workflows

� F# a .NET implementation of (a variant of) OCaml.

� “Asynchronous workflows” is a way to turn ordinary
programs into parallel programs.

� Based on language feature called “computation
expressions”

� Underlying implementation uses “Task Parallel Library”

� Video (PDC 2008) - http://channel9.msdn.com/pdc2008/TL11/

8/3/2009 13

How asynchronous workflows work

� “Computation expressions,” are an F# feature, inspired
by the Haskell “monad” feature, which allows for a kind
of reflection.

� Computation expressions allow certain language
constructs to be re-interpreted using user-supplied constructs to be re-interpreted using user-supplied
semantics. The Async library is a workflow.

8/3/2009 14

Computation expressions

� seq { … yield e … } executes “… yield e …” and gathers
the values of e into a list.

� Within “…”, can use limited number of constructs:

� use var=expr in expr

� let var=expr in expr

� expr; expr� expr; expr

� yield expr, …

� “seq” is not a keyword, but the name of an object that
says how to interpret these language constructs.

8/3/2009 15

Computation expressions

� General form of computation expression:

name { … expression as above … }

� name must be bound to an object of a class that
implements these operations:

α α β β� Bind: α comp * (α →β comp) →β comp

� Delay: (unit → α comp) → α comp

� Let: α comp * (α → α comp) → α comp

� Return: α → α comp

where comp is any type constructor you want (e.g., list).

8/3/2009 16

Computation expressions (cont.)

� The definitions of the above operators are used the
interpret the syntax within the computation expression.
E.g.,
c { let n1 = f in1

let n2 = g in2

let sum = n1+n2let sum = n1+n2

yield sum }

would translate (statically) to
c.Delay(fun () ->

c.Bind(f in1, (fun n1 ->

c.Bind(f in2, (fun n2 ->

c.Let(n1+n2, (fun sum -> c.Return sum)))))))

8/3/2009 17

Asynchronous workflows

� Asynchronous workflows are an application of
computation expressions.

The Async module implements these operations (among
others) using the Async type constructor:

Bind: α Async * (α →β Async) → β Async

Return: α → α Async

plus these methods:

� Run: α Async *int * bool → α

� Parallel: (α Async) list → (α list) Async

� Spawn: unit Async → unit

8/3/2009 18

Reminders

� Final review session tomorrow

� Still have lecture on Thursday

� But not on the exam

� Unit projects due this week

8/3/2009 19

