
CS 421 Lecture 25: Lazy evaluation and lambda
calculus

� Announcements

� Lecture outline

� What lazy evaluation is

� Why it’s useful

� Implementing lazy evaluation

� Lambda calculus

7/30/2009 1

Announcements

� Practice homework posted

� Final review

� Moved to Tuesday, August 4

� Final exam information

� Posted by tomorrow

� Cumulative grades & statistics

� Posted by Monday/Tuesday

7/30/2009 2

What is lazy evaluation?

� A slightly different evaluation mechanism for functional
programs that provide additional power.

� Used in popular functional language Haskell

� Basic idea: Do not evaluate expressions until it is really
necessary to do so.

7/30/2009 3

What is lazy evaluation?

� In OSsubst, change application rule from:

to:

'

']/[fun

21

21

vee

vxveveexe

⇓

⇓⇓→⇓

vxeeexe ⇓→⇓]/[fun to:

What difference does it make?

(fun x y -> if x=0 then x else y) 0 (3/0)

7/30/2009 4

vee

vxeeexe

⇓

⇓→⇓

21

21]/[fun

Lazy lists

� Laziness principle can apply to cons operation.

� Values = constants | fun x -> e | e1 :: e2

vehd

veeee

⇓

⇓⇓

:: 121

� Could do the same for all data types, i.e., make all
constructors lazy.

7/30/2009 5

vehd ⇓

vetl

veeee

⇓

⇓⇓

:: 221

2121
:::: eeee ⇓

Using lazy lists

� Consider this OCaml definition:

let rec ints = fun i -> i :: ints (i+1)

let ints0 = ints 0

hd (tl (tl ints0))

� What happens in OCaml? What would happen in lazy
OCaml?

7/30/2009 6

“Generate and test” paradigm

� Many computations have the form “generate a list of
candidates and choose the first successful one.”

� Using lazy evaluation, can separate candidate generation
from selection:

� Generate list of candidates – even if infinite

� Search list for successful candidate� Search list for successful candidate

� With lazy evaluation, only candidates that are tested are
ever generated.

7/30/2009 7

Example: square roots

� Newton-Raphson method:

� To find sqrt(x), generate sequence: <ai>, where a0 is arbitrary,
and ai+1 = (ai +x/ai)/2.

� Then choose first ai s.t. | ai-ai-1|<ε.

let next x a = (a+x/a)/2let next x a = (a+x/a)/2

let rec repeat f a = a :: repeat f (f a)

let rec withineps (a1::a2::as) =

if abs(a2-a1) < eps then a2

else withinips eps (a2::as)

let sqrt x eps = withineps eps (repeat (next x) (x/2)

7/30/2009 8

sameints

� sameints: (int list) list -> (int list) list -> bool

� OCaml:

sameints lis1 lis2 = match (lis1,lis2) with

([], []) -> true

| (_,[]) -> false| (_,[]) -> false

| ([],_) -> false

| ([]::xs,[]::ys) -> sameints xs ys

| ([]::xs,ys) -> sameints xs ys

| (_::xs,[]::ys) -> sameints xs ys

| (a::as,b::bs) -> (a=b) and sameints as bs;;

7/30/2009 9

sameints

� sameints: (int list) list -> (int list) list -> bool

� Lazy OCaml:

flatten lis = match lis with

[] -> []

| []::lis’ -> flatten lis’| []::lis’ -> flatten lis’

| (a::as)::lis’ -> a :: flatten (as::lis’)

equal lis1 lis2 = match (lis1,lis2) with

([],[]) -> true

| (_,[]) -> false

| ([],_) -> false

| (a::as, b::bs) -> (a=b) and equal as bs

sameints lis1 lis2 = equal (flatten lis1) (flatten lis2)

7/30/2009 10

Implementation of lazy evaluation

� Use closure model, modified.

� Introduce new value, called a thunk:

� - like a closure, but e does not have to be an
abstraction.

>< η,e

veexexe ⇓→→⇓],,[,fun , ηηηη ><

7/30/2009 11

vee

veexexe

⇓

⇓→→⇓

21

21

,

],,[,fun ,

η

ηηηη ><

>< ηη
η

η
,)(' if

,'

,'
ex

vx

ve
=

⇓

⇓

Lambda-calculus

� Historically, “fun x->e” was written “λx.e”

� Original “functional language” was proposed by Alonzo
Church in 1941:

� Exprs: var’s, λx.e, e1e2

� Operational semantics:

� Values: (closed) abstractions� Values: (closed) abstractions

� Computation rule: Apply β-reductions anywhere in expression;
repeat until value is obtained, if ever. (β-reduction means replacing
any subexpression of the form (λx.e)e’ by e[e’/x].)

� Computation rule corresponds to lazy evaluation.

7/30/2009 12

Lambda-calculus (cont.)

� In a given expression, there may be many choices of
which β-reductions to perform in which order. Some may

never lead to a value, while others do, but:

� Theorem (Church-Rosser) For any expression e, if two
sequences of β-reductions lead to a value, then they lead sequences of β-reductions lead to a value, then they lead

to the same value.

� Theorem Lambda-calculus is a Turing-complete
language.

7/30/2009 13

Lambda-calculus: the power of h-o functions

� Just need abstraction, application, variables, let

� To show power, we will remove parts of Ocaml:

� tuples, lists

� integers

� if-then-else

� recursion� recursion

� Use β-reduction:

and composition:

(OCaml defn: compose f g = fun x -> f (g x))

7/30/2009 14

]/'[').(xeeeex ≡λ

) (. xgfxgf λ=o

Tuples

let pair x y = λf. f x y

let fst p = p (λx. λy. x)

let fst p = p (λx. λy. y)

� Example: fst (pair 4 5)
= (λp. p (λx. λy. x)) ((λx. λy. λf. f x y) 4 5)= (λp. p (λx. λy. x)) ((λx. λy. λf. f x y) 4 5)

≡β (λp. p (λx. λy. x)) (λf. f 4 5)

≡β (λf. f 4 5) (λx. λy. x)

≡β (λx. λy. x) 4 5

≡β (λy. 4) 5

≡β 4

7/30/2009 15

Lists

let nil = λf. f 0 0 true

let cons x y = λf. f x y false

let hd lis = lis (λx. λy. λz. x)

let tl lis = lis (λx. λy. λz. y)

let isnull lis = lis (λx. λy. λz. z)

Example: � Example: isnull nil
= (λlis. lis (λx. λy. λz. z)) (λf. f 0 0 true)

≡β (λf. f 0 0 true) (λx. λy. λz. z)

≡β (λx. λy. λz. z) 0 0 true ≡β true

� Example: isnull (cons a b)
= isnull (λf. f a b false)

≡β … ≡β (λx. λy. λz. z) a b true ≡β false

7/30/2009 16

Natural numbers

� Church numerals

� Represent n by expression:

� Example:

n
fffffffxffxf)...))(...((.. λλλλ == ooo

� Example:

0 = λf. λx. x

1 = λf. λx. f x ≡η λf. f

2 = λf. λx. f (f x) = λf. f ᵒ f

3 = λf. f ᵒ f ᵒ f

7/30/2009 17

Addition and multiplication

� i + j = λf. (i f)ᵒ(j f)

1 + 2 = λf. (1 f)ᵒ(2 f) = λf. (f)ᵒ(f ᵒ f)

= λf. f ᵒ f ᵒ f = 3

� i * j = λf. i ᵒ j

2 * 3 = 2 ᵒ 3 = (λf. f ᵒ f)ᵒ(λf. f ᵒ f ᵒ f)

≡ λg. ((λf. f ᵒ f) ((λf. f ᵒ f ᵒ f) g))

≡ λg. ((λf. f ᵒ f) (λg. g ᵒ g ᵒ g))

≡ λg. ((g ᵒ g ᵒ g) ᵒ (g ᵒ g ᵒ g))

≡ λg. g6 = 6

7/30/2009 18

Recursion in lambda-calculus

� Define “paradoxical combinator”

� For any f:

(apply β-reduction twice)

)) (.()) (..(Y xxfxxxfxf λλλ=

) Y(Y fff = (apply β-reduction twice)

� Consider OCaml definition:
let rec sum x = if x = 0 then 0 else x+sum(x-1)

then consider this definition:
let Sum = Y(λsum. λx. if x=0 then 0 else x+Sum(x-1))

� Note that definition of Y is not recursive.

7/30/2009 19

) Y(Y fff =

Recursion

let Sum = Y(λsum. λx. if x=0 then 0 else x+sum(x-1))

� Evaluate Sum 2:

(Y s) 2 = s (Y s) 2

= (λx. if x=0 then 0 else x+(Y s)(x-1)) 2= (λx. if x=0 then 0 else x+(Y s)(x-1)) 2

= if 2=0 then 0 else x + (Y s)(2-1)

= 2 + (Y s) 1

= 2 + s (Y s) 1

= 2 + (λx. if x=0 …) 1

= 2 + 1 + (Y s) 0

= 2 + 1 + s (Y s) = … 2 + 1 + 0 = 3

� Note: need lazy evaluation!

7/30/2009 20

Lambda-calculus

� Similarly, can get rid of:

� if-then-else

� booleans

� …

� To express any sequential functional program, all we � To express any sequential functional program, all we
need is:

� Variables

� Abstraction (λ-expressions)

� Application (using β-reduction)

7/30/2009 21

