CS 421 Lecture 25: Lazy evaluation and lambda calculus

- Announcements
- Lecture outline
- What lazy evaluation is
- Why it's useful
- Implementing lazy evaluation
- Lambda calculus

Announcements

- Practice homework posted
- Final review
- Moved to Tuesday, August 4
- Final exam information
- Posted by tomorrow
- Cumulative grades \& statistics
- Posted by Monday/Tuesday

What is lazy evaluation?

- A slightly different evaluation mechanism for functional programs that provide additional power.
- Used in popular functional language Haskell
- Basic idea: Do not evaluate expressions until it is really necessary to do so.

What is lazy evaluation?

- In $\mathrm{OS}_{\text {subst }}$ change application rule from:

$$
\frac{e_{1} \Downarrow \text { fun } x \rightarrow e \quad e_{2} \Downarrow v \quad e[v / x] \Downarrow v^{\prime}}{e_{1} e_{2} \Downarrow v^{\prime}}
$$

to:

$$
\frac{e_{1} \Downarrow \text { fun } x \rightarrow e \quad e\left[e_{2} / x\right] \Downarrow v}{e_{1} e_{2} \Downarrow v}
$$

What difference does it make?

```
(fun x y -> if x=0 then x else y) 0 (3/0)
```


Lazy lists

- Laziness principle can apply to cons operation.
- Values = constants | fun x-> e|e1 :: e2

$$
\begin{gathered}
\frac{e \Downarrow e_{1}:: e_{2}}{h d e \Downarrow v} e_{1} \Downarrow v \\
\frac{e \Downarrow e_{1}:: e_{2} \quad e_{2} \Downarrow v}{t l e \Downarrow v}
\end{gathered}
$$

- Could do the same for all data types, i.e., make all constructors lazy.

Using lazy lists

- Consider this OCaml definition:

```
let rec ints = fun i -> i :: ints (i+1)
let ints0 = ints 0
hd (tl (tl ints0))
```

- What happens in OCaml? What would happen in lazy OCaml?

"Generate and test" paradigm

- Many computations have the form "generate a list of candidates and choose the first successful one."
- Using lazy evaluation, can separate candidate generation from selection:
- Generate list of candidates - even if infinite
- Search list for successful candidate
- With lazy evaluation, only candidates that are tested are ever generated.

Example: square roots

- Newton-Raphson method:
- To find sqrt(x), generate sequence: < $\mathrm{a}_{\mathrm{i}}>$, where a_{0} is arbitrary, and $a_{i+1}=\left(a_{i}+x / a_{i}\right) / 2$.
- Then choose first a_{i} s.t. $\left|a_{i}-a_{i}-1\right|<\varepsilon$.

```
let next x a = (a+x/a)/2
let rec repeat f a = a :: repeat f (f a)
let rec withineps (a1::a2::as) =
        if abs(a2-a1) < eps then a2
        else withinips eps (a2::as)
let sqrt x eps = withineps eps (repeat (next x) (x/2)
```


sameints

- sameints: (int list) list -> (int list) list -> bool
- OCaml:

```
sameints lis1 lis2 = match (lis1,lis2) with
    ([], []) -> true
    | (_,[]) -> false
    | ([],_) -> false
    | ([]::xs,[]::ys) -> sameints xs ys
    | ([]::xs,ys) -> sameints xs ys
    | (_::xs,[]::ys) -> sameints xs ys
    | (a::as,b::bs) -> (a=b) and sameints as bs;;
```


sameints

- sameints: (int list) list -> (int list) list -> bool
- Lazy OCaml:

```
flatten lis = match lis with
        [] -> []
    | []::lis' -> flatten lis'
    | (a::as)::lis' -> a :: flatten (as::lis')
equal lis1 lis2 = match (lis1,lis2) with
    ([],[]) -> true
    | (_,[]) -> false
    | ([],_) -> false
    | (a::as, b::bs) -> (a=b) and equal as bs
sameints lis1 lis2 = equal (flatten lis1) (flatten lis2)
```


Implementation of lazy evaluation

- Use closure model, modified.
- Introduce new value, called a thunk:
- $\triangleleft e, \eta \triangleright$ - like a closure, but e does not have to be an abstraction.

$$
\begin{gathered}
\eta, e_{1} \Downarrow\langle\text { fun } x \rightarrow e, \eta\rangle \quad \eta\left[x \rightarrow \triangleleft e_{2}, \eta \triangleright\right], e \Downarrow v \\
\eta, e_{1} e_{2} \Downarrow v \\
\frac{\eta^{\prime}, e \Downarrow v}{\eta^{\prime}, x \Downarrow v} \quad \text { if } \eta^{\prime}(x)=\triangleleft e, \eta \triangleright
\end{gathered}
$$

Lambda-calculus

- Historically, "fun x->e" was written " $\lambda x . e^{\prime \prime}$
- Original "functional language" was proposed by Alonzo Church in 1941:
- Exprs: var's, $\lambda x . e, \mathrm{e}_{1} \mathrm{e}_{2}$
- Operational semantics:
- Values: (closed) abstractions
- Computation rule: Apply β-reductions anywhere in expression; repeat until value is obtained, if ever. (β-reduction means replacing any subexpression of the form (λ x.e) e^{\prime} by e[$\left.\mathrm{e}^{\prime} / \mathrm{x}\right]$.)
- Computation rule corresponds to lazy evaluation.

Lambda-calculus (cont.)

- In a given expression, there may be many choices of which β-reductions to perform in which order. Some may never lead to a value, while others do, but:
- Theorem (Church-Rosser) For any expression e, if two sequences of β-reductions lead to a value, then they lead to the same value.
- Theorem Lambda-calculus is a Turing-complete language.

Lambda-calculus: the power of h-o functions

- Just need abstraction, application, variables, let
- To show power, we will remove parts of Ocaml:
- tuples, lists
- integers
- if-then-else
- recursion
- Use β-reduction:

$$
(\lambda x . e) e^{\prime} \equiv e\left[e^{\prime} / x\right]
$$

and composition:

$$
f \circ g=\lambda x \cdot f(g x)
$$

(OCaml defn: compose $\mathrm{f} g=\mathrm{fun} \mathrm{x} \rightarrow \mathrm{f}(\mathrm{g} \mathrm{x})$)

Tuples

```
let pair x y = \lambdaf. f x y
let fst p = p (\lambdax. \lambday. x)
let fst p = p (\lambdax. \lambday. y)
```

- Example: fst (pair 4 5)

```
\(=(\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x))((\lambda x \cdot \lambda y \cdot \lambda f . f x y) 45)\)
\(\equiv_{\beta}(\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x))(\lambda f \cdot f 45)\)
\(\equiv_{\beta}\) ( \(\lambda \mathrm{f}\). f 4 5 ) ( fx . \(\lambda y \cdot x\) )
\(\equiv_{\beta}(\lambda x \cdot \lambda y \cdot x) 45\)
\(\equiv_{\beta}(\lambda y\). 4) 5
\(\equiv_{\beta} 4\)
```


Lists

```
let nil = \lambdaf. f 0 0 true
let cons x y = \lambdaf. f x y false
let hd lis = lis (\lambdax. \lambday. \lambdaz. x)
let tl lis = lis (\lambdax. \lambday. \lambdaz. y)
let isnull lis = lis (\lambdax. \lambday. \lambdaz. z)
```

- Example: isnull nil

```
= (\lambdalis. lis (\lambdax. \lambday. \lambdaz. z)) (\lambdaf. f 0 0 true)
\equiv}\mp@subsup{\beta}{}{(\lambdaf. f 0 0 true) (\lambdax. \lambday. \lambdaz. z)
\equiv
```

- Example: isnull (cons a b)

```
= isnull (\lambdaf. f a b false)
\equiv
```


Natural numbers

- Church numerals
- Represent n by expression:

$$
\lambda f \cdot \lambda x \cdot f(f(\ldots(f x) \ldots))=\lambda f . f \circ f \circ \ldots \circ f=\lambda f \cdot f^{n}
$$

- Example:

```
0 = \lambdaf. \lambdax. x
1 = \lambdaf. \lambdax. f x = n \ \f. f
2 = \lambdaf. \lambdax. f (f x) = \lambdaf. f of
3=\lambdaf. f of f f
```


Addition and multiplication

$$
\begin{aligned}
& \square \quad i+j=\lambda f .(i f) \circ(j f) \\
& 1+2=\lambda f .(1 \mathrm{f}) \circ(2 \mathrm{f})=\lambda \mathrm{f} .(\mathrm{f}) \circ(\mathrm{f} \circ \mathrm{f}) \\
& =\lambda f . f \circ f \circ f=3 \\
& \text { - i * j }=\lambda f . i \circ j
\end{aligned}
$$

Recursion in lambda-calculus

- Define "paradoxical combinator"

$$
\mathrm{Y}=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

- For any f:

$$
\mathrm{Y} f=f(\mathrm{Y} f) \quad \text { (apply } \beta \text {-reduction twice) }
$$

- Consider OCaml definition:

```
let rec sum x = if x = 0 then 0 else x+sum(x-1)
```

then consider this definition:
let $\operatorname{Sum}=Y(\lambda \operatorname{sum} . \lambda x$. if $x=0$ then 0 else $x+\operatorname{Sum}(x-1))$

- Note that definition of Y is not recursive.

Recursion

```
let Sum = Y(\lambdasum. \lambdax. if x=0 then 0 else x+sum(x-1))
```

- Evaluate sum 2:

$$
\begin{aligned}
& (Y \mathrm{~s}) 2=\mathrm{s}(\mathrm{Y} s) 2 \\
& =(\lambda x \text {. if } x=0 \text { then } 0 \text { else } x+(Y \operatorname{s})(x-1)) 2 \\
& =\operatorname{if} 2=0 \text { then } 0 \text { else } x+(Y \operatorname{s})(2-1) \\
& =2+(Y \mathrm{~s}) 1 \\
& =2+s(Y s) 1 \\
& =2+(\lambda x . \text { if } x=0 \ldots) 1 \\
& =2+1+(\mathrm{Y} s) 0 \\
& =2+1+s(Y \mathrm{~s})=\ldots 2+1+0=3
\end{aligned}
$$

- Note: need lazy evaluation!

Lambda-calculus

- Similarly, can get rid of:
- if-then-else
- booleans
- ...
- To express any sequential functional program, all we need is:
- Variables
- Abstraction (λ-expressions)
- Application (using β-reduction)

