CS 421 Lecture 25: Lazy evaluation and lambda

calculus
R,

= Announcements

= Lecture outline
= What lazy evaluation is
= Why it's useful
= Implementing lazy evaluation
= Lambda calculus

7/30/2009 1

Announcements

R,

= Practice homework posted

= Final review
= Moved to Tuesday, August 4

= Final exam information
= Posted by tomorrow

= Cumulative grades & statistics
= Posted by Monday/Tuesday

7/30/2009 2

What is lazy evaluation?

= A slightly different evaluation mechanism for functional
programs that provide additional power.

= Used in popular functional language Haskell

= Basic idea: Do not evaluate expressions until it is really
necessary to do so.

7/30/2009

What is lazy evaluation?

= In OS, ., Change application rule from:

e, Ufinx se e, Vv ev/x1Uv

ee, U v

to: eﬂlfunx%e e[ez/x]Uv

€,€, Uv
What difference does it make?

(fun x y —> 1if x=0 then x else y) 0 (3/0)

7/30/2009

Lazy lists

= Laziness principle can apply to cons operation.
= Values = constants | funx->e | el ::e2

qux% qu
hd e v
é, .. e Ue::e
T ele e, e Uy
tlellv

= Could do the same for all data types, /.e., make all
constructors lazy.

7/30/2009

Using lazy lists

I —

= Consider this OCaml definition:

let rec ints = fun 1 -> 1 :: ints (i+1)
let ints0O = ints O
hd (tl (tl ints0))

= What happens in OCaml|? What would happen in lazy
OCaml?

7/30/2009 6

“"Generate and test” paradigm

= Many computations have the form “generate a list of
candidates and choose the first successful one.”
= Using lazy evaluation, can separate candidate generation

from selection:
= Generate list of candidates — even if infinite
= Search list for successful candidate

= With lazy evaluation, only candidates that are tested are
ever generated.

7/30/2009

Example: square roots
=

= Newton-Raphson method:
= To find sqrt(x), generate sequence: <a,>, where a, is arbitrary,
and a..; = (a; +x/a;)/2.
= Then choose first a, s.t. | ar-a-1|<Ee.

let next x a = (a+x/a)/2
let rec repeat £ a = a :: repeat £ (f a)
let rec withineps (al::a2::as) =
if abs(az2-al) < eps then a2
else withinips eps (a2::as)

let sgrt x eps = withineps eps (repeat (next x) (x/2)

7/30/2009 8

sameints

I —

= sameints: (int list) list -> (int list) list -> bool
= OCaml:

sameints 1lisl 1lis?2 = match (lisl,lis?2) with
([l, []) —> true
[]) —> false

’
]
]:iixs, []l::ys) —> sameints xs ys
]::xs,ys) —> sameints xs ys

_:1:xXs,[]::ys) —> sameints xs ysS

a::as,b::bs) -> (a=b) and sameints as bs;;

7/30/2009 9

sameints

I —

= sameints: (int list) list -> (int list) list -> bool
= Lazy OCaml:

flatten 1lis = match lis with
[] —> 1]
| []::1is’ —> flatten 1lis’
| (a::as)::1lis’ —> a :: flatten (as::1is’)
equal lisl 1lis2 = match (lisl,lis2) with
([1,[1) —> true
_, 1) —> false
[1,_) —> false

a::as, b::bs) -> (a=b) and equal as bs

|
|
|
sameints lisl 1lis2 = equal (flatten 1lisl) (flatten 1lis2)

7/30/2009 10

Implementation of lazy evaluation

R,

= Use closure model, modified.

= Introduce new value, called a thunk:

= Je,) > - like a closure, but e does not have to be an
abstraction.

n,e, 4 (fun x - e,77) nix —s<e,,nlelv

n,ee, Uv

ﬂ',er
77',va

if 7'(x)=<e,n>

7/30/2009 11

Lambda-calculus

= Historically, “fun x->e"” was written “Ax.e”

= QOriginal “functional language” was proposed by Alonzo
Church in 1941:

= Exprs: var's, Ax.e, e;e,
= QOperational semantics:
= Values: (closed) abstractions

= Computation rule: Apply p-reductions anywhere in expression;
repeat until value is obtained, if ever. (B-reduction means replacing
any subexpression of the form (Ax.e)e’ by e[e'/x].)

= Computation rule corresponds to lazy evaluation.

7/30/2009 12

Lambda-calculus (cont.)

= In a given expression, there may be many choices of
which B-reductions to perform in which order. Some may
never lead to a value, while others do, but:

= Theorem (Church-Rosser) For any expression e, if two
sequences of pB-reductions lead to a value, then they lead

to the same value.

= Theorem Lambda-calculus is a Turing-complete
language.

7/30/2009

13

Lambda-calculus: the power of h-o functions

R,

= Just need abstraction, application, variables, let
= To show power, we will remove parts of Ocaml:

= tuples, lists

= Integers

= jf-then-else

= recursion
= Use B-reduction:

(Axe)e'=ele'/ x]
and composition:

fog=Axf(gx)
(OCamI defn: compose £ g = fun x -> £ (g x))

7/30/2009 14

Tuples

let pair x vy = Af. £ x vy
let fst p = p (AX. Ay. X)
let fst p = p (AX. Ay. V)
- Example: fst (pair 4 5)
(Ap. P (Ax. Ay. X)) ((Ax. Ay. Af. £ x y) 4 5)
(Ap. P (Ax. Ay. x)) (Af. £ 4 5)

Af. £ 4 5) (Ax. Ay. X)

AX. Ay. x) 4 5
4) 5

il
o] o]

Il
o] o]
IaN — — —
>
K

™

7/30/2009 15

Lists

I —

let nil = Af. £ 0 0 true

let cons x y = Af. £ x y false

let hd 1lis = 1lis (Ax. Ay. AZ. X)

let tl1 1lis = 1lis (AX. Ay. AZ. V)

let isnull 1lis = 1lis (AX. Ay. AzZ. Z)

= Example: isnu1l ni1

(Alis. lis (Ax. Ay. Az. z)) (Af. £ 0 0 true)
6 (Af. £ 0 0 true) (Ax. Ay. Az. z)
=g (AX. Ay. Az. z) 0 0 true =g true

u Example: isnull (cons a b)
isnull (Af. £ a b false)
g e =p (AX. Ay. AzZ. zZ) a b true =3 false

7/30/2009 16

Natural numbers

= Church numerals
= Represent 1 by expression:

A Al O N=A fofo.of=Af"

= Example:
0 = Af. AxX. X
1 = Af. Ax. fxzn)\f. f
2 = Af. Ax. £ (f x) = Af. £ o f
3 =Af. £ o f o f

7/30/2009 17

Addition and multiplication

f o f o f)
£) 9))

2 * 3 =2 ©° 3 = (Af. £ ° f)o(Af.

= Ag. ((Af. £ ° f) ((Af. £ © £ o

= Ag. ((Af. £ ° f) (Ag. g ° g ° qg))
= Ag. ((g°g=°qg) ° (g°qgc°g))

= Ag. g°® =6

7/30/2009

18

Recursion in lambda-calculus

R,

= Define “paradoxical combinator”
Y =Af .(Ax.f (x x)) (Ax. f (x X))

= For any f:
Y f=f(Y f) (apply B-reduction twice)

= Consider OCaml definition:

let rec sum x = 1f x = 0 then 0 else x+sum(x—-1)

then consider this definition:
let Sum = Y (Asum. Ax. 1f x=0 then 0 else x+Sum(x-1))

= Note that definition of Y is not recursive.

7/30/2009 19

Recursion

let Sum = Y (Asum. Ax. 1f x=0 then 0 else x+sum(x—-1))

= Evaluate sum 2:

(Y s) 2 = s (Y s) 2
= (Ax. 1f x=0 then 0 else x+ (Y s) (x-1)) 2
= 1f 2=0 then 0 else x + (Y s)(2-1)

=2 4+ (Y s) 1

= 2 + s (Y s) 1

= 2 + (Ax. 1f x=0 ..) 1

=2 + 1 + (Y s) O

=2+ 1+ s (Ys)=.2+1+0=3

= Note: need lazy evaluation!

7/30/2009 20

Lambda-calculus

R,

= Similarly, can get rid of:
= jf-then-else
= booleans

= To express any sequential functional program, all we
need is:
= Variables
= Abstraction (A-expressions)
= Application (using pB-reduction)

7/30/2009 21

