
CS 421 Lecture 23: Hoare logic

� Lecture outline

� Proving properties of imperative programs

� Hoare logic

� Judgments, a.k.a. “Hoare formulas”

� Axioms

� Rules of inference� Rules of inference
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Review of last week

� Proof systems

� Formal frameworks for writing proofs

� Judgments, axioms, rules of inference

� Type systems

� Used for type checking, type inference� Used for type checking, type inference

� Judgments of the form:

� Operational semantics

� Used for proofs of correctness

� Judgments of the form: σ,η - e ⇓ v,σ′
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Review: operational semantics

� Operational semantics of functional languages

� Based on expression evaluation

� Proofs follow the structure of the expression

� Variants

� OSsubst

� OSclo

� OSstate
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Example

let f = fun x -> 3 in (f 1, f true)
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Today: proofs for imperative programs

� Hoare logic (or Hoare rules or Hoare formulas)

� Prove correctness of imperative programs

� Specifies pre- and post-conditions for statement 
execution

� Axiomatic semantics

� Contract principle
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Correctness of imperative programs

� Hoare formula says that if the variables in a program 
satisfy some properties, then after executing a given 
program, they satisfy some different properties.

� P {A} Q

� Examples:� Examples:

x>0 { while ( x>0 )

{y := y*x; x := x-1;} } y = y * x!

x=x0 & y=y0 { t := x; x := y; y := t } x=y0 & y=x0
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More examples

true { if ( x<0 ) x := -x; } x = |x|

true { n := length(a); b := [hd a];

a := tl a;

while (a != []) {while (a != []) {

b = (hd a + hd b) :: b;

a = tl a; }

}                                (where bi = hd (tli b)

and similarly for ak)
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Hoare logic

� Judgments: P {S} Q

� P, Q assertions about variables in the program

� S a statement in this language:� S a statement in this language:

Stmt -> Var := Expr | Stmt;Stmt

| if (Expr) then Stmt else Stmt

| while (Expr) Stmt
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Inference rules for Hoare logic

P  e}:{x   P[e/x] =

b & P S} (b) {while P

P {S} b & P

¬Q {S} P

QQ'Q' {S} P'P'  P ⇒⇒
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b & P S} (b) {while P ¬

R }S ;{S P

R }{S QQ }{S P

21

21

Q {S} P

Q }S else S then (b) {if P

Q }{S b & PQ }{S b & P

21

21 ¬



Rule of assignment

x+1=2 { x := x+1 } x=2

P  e}:{x   P[e/x] =

y=2 { x := y } x=2
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Rule of assignment: examples

y=2 { x:=y } x=2

y=2 { x:=2 } y=x

x+1=n+1 { x:=x+1 } x=n+1x+1=n+1 { x:=x+1 } x=n+1

x+1=n { x:=x+1 } x=n

x+1=n { x:=x+1 } x=n

true { x:=2 } x=2
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Rule of consequence

Q {S} P

QQ'Q' {S} P'P'  P ⇒⇒
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Rule of consequence: example

Q {S} P

QQ'Q' {S} P'P'  P ⇒⇒

1nx1nxA1n1xnx +=⇒+=+=+⇒=
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Which inferences are correct? 

25 x  x}*x:{x3x

25 x  x}* x :{x 5  x & 0 x 

<==

<=<>

25 x  x}* x :{x 3x <==
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25 x  x}*x:{x5  x & 0 x 

25 x  x}* x :{x 3x

<=<>

<==

25 x  x}*x:{x5  x & 0 x 

25 x  x}* x :{x 25 x*x

<=<>

<=<



Sequence rule

R }S ;{S P

R }{S QQ }{S P

21

21
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Sequence rule: example

R }S ;{S P

R }{S QQ }{S P

21

21

&& 0

00

0 yx
xt

BA

xt
xx =

===

=

=

=

=
=

7/27/2009 16

&&

&

&

&

&
&

0

0

0

0

0

0

0

0

0

0

0

0

xy

yx
t}:y y;: xx;:{t

yy

xx

xy

yx
};{

yy

xx

yy

xxx:t
yy

xx

=

=
===

=

=

=

=
==

=

=

=

==
=

=
tyyx



Sequence rule: example
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If rule

Q }S else S then (b) {if P

Q }{S b & PQ }{S b & P

21

21 ¬
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If rule: example

Q }S else S then (b) {if P

Q }{S b & PQ }{S b & P

21

21 ¬
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while rule

b & P S} (b) {while P

P {S} b & P

¬
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while rule: example

s = 0; i = 0

{ while (i < n) {

b & P S} (b) {while P

P {S} b & P

¬

{ while (i < n) {

s := s+i;

i := i+1;

}
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Comments on Hoare logic

� Proofs in Hoare logic are almost syntax-directed, i.e., 
almost have the same shape as the program being 
proved. 

� The only exceptions are the uses of the rule of consequence.

� Applying Hoare rules is largely mechanical – given A and � Applying Hoare rules is largely mechanical – given A and 
Q, most of the proof (including P) can be generated 
automatically.

� Creativity is required mainly in determining the invariant in a 
while loop, because Q may not have the form “P & ¬b”.

� A formula of that form needs to be found (after which the rule of 
consequence can be used, proving P & ¬b ⇒ Q).
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Example: gcd algorithm

a > 0 & b > 0 & a=a0 & b=b0 {

while (a ≠ b)

if (a > b) then a := a − b;

else b := b − a;

} a = gcd(a0, b0)} a = gcd(a0, b0)
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