CS 421 Lecture 23: Hoare logic

- Lecture outline
 - Proving properties of imperative programs
 - Hoare logic
 - Judgments, a.k.a. "Hoare formulas"
 - Axioms
 - Rules of inference

Review of last week

- Proof systems
 - Formal frameworks for writing proofs
 - Judgments, axioms, rules of inference
- Type systems
 - Used for type checking, type inference
 - Judgments of the form: $\Gamma \vdash e: au$
- Operational semantics
 - Used for proofs of correctness
 - Judgments of the form: $\sigma,\eta \vdash e \Downarrow v,\sigma'$

Review: operational semantics

- Operational semantics of functional languages
 - Based on expression evaluation
 - Proofs follow the structure of the expression
- Variants
 - OS_{subst}
 - OS_{clo}
 - OS_{state}

let $f = fun x \rightarrow 3$ in (f 1, f true)

Today: proofs for imperative programs

- Hoare logic (or Hoare rules or Hoare formulas)
 - Prove correctness of imperative programs
- Specifies pre- and post-conditions for statement execution
 - Axiomatic semantics
 - Contract principle

Correctness of imperative programs

- Hoare formula says that if the variables in a program satisfy some properties, then after executing a given program, they satisfy some different properties.
 - P {A} Q
- Examples:
 - x>0 { while (x>0) {y := y*x; x := x-1;} } y = y * x!

$$x=x_0 \& y=y_0 \{ t := x; x := y; y := t \} x=y_0 \& y=x_0$$

More examples

true { if (
$$x < 0$$
) x := -x; } x = |x|

true { n := length(a); b := [hd a];
a := tl a;
while (a != []) {
b = (hd a + hd b) :: b;
a = tl a; }
}
$$b_i = \sum_{k=0}^{n-i-1} a_k$$
 (where b_i = hd (tlⁱ b)
and similarly for a_k)

Hoare logic

- Judgments: P {S} Q
- P, Q assertions about variables in the program
- S a statement in this language: Stmt -> Var := Expr | Stmt;Stmt
 | if (Expr) then Stmt else Stmt
 | while (Expr) Stmt

Inference rules for Hoare logic

 $P[e/x] \{ x \coloneqq e \} P$

$$\frac{P \Rightarrow P' \quad P'\{S\}Q' \quad Q' \Rightarrow Q}{P\{S\}Q}$$

 $\frac{P\&b\{S\}P}{P\{while(b)S\}P\&\neg b}$

 $\frac{P\{S_1\}Q \quad Q\{S_2\}R}{P\{S_1;S_2\}R}$

 $\frac{P \& b \{S_1\} Q \quad P \& \neg b \{S_2\} Q}{P \{ \text{if (b) then } S_1 \text{ else } S_2 \} Q}$

Rule of assignment

$$P[e/x] \{ x \coloneqq e \} P$$

Rule of assignment: examples

7/27/2009

Rule of consequence

$\frac{P \Rightarrow P' \quad P'\{S\}Q' \quad Q' \Rightarrow Q}{P\{S\}Q}$

Rule of consequence: example

$$\frac{P \Rightarrow P' \quad P'\{S\}Q' \quad Q' \Rightarrow Q}{P\{S\}Q}$$

$$\frac{\mathbf{x} = \mathbf{n} \Rightarrow \mathbf{x} + \mathbf{l} = \mathbf{n} + \mathbf{l}}{\mathbf{x} = \mathbf{n}} \quad \mathbf{A} \quad \mathbf{x} = \mathbf{n} + \mathbf{l} \Rightarrow \mathbf{x} = \mathbf{n} + \mathbf{l}}{\mathbf{x} = \mathbf{n}} \quad \{\mathbf{x} \coloneqq \mathbf{x} + \mathbf{l}\} \quad \mathbf{x} = \mathbf{n} + \mathbf{l}}$$

A =
$$\frac{1}{x+1=n+1} \{x=x+1\} \ x=n+1$$

Which inferences are correct?

$$\frac{x > 0 \& x < 5 \quad \{x \coloneqq x \ast x\} \quad x < 25}{x = 3 \quad \{x \coloneqq x \ast x\} \quad x < 25}$$

$$\frac{x = 3 \quad \{x \coloneqq x \ast x\} \quad x < 25}{x > 0 \& x < 5 \quad \{x \coloneqq x \ast x\} \quad x < 25}$$

$$\frac{x * x < 25 \{x \coloneqq x * x\}}{x > 0 \& x < 5 \{x \coloneqq x * x\}} x < 25$$

Sequence rule

$\frac{P\{S_1\}Q \quad Q\{S_2\}R}{P\{S_1;S_2\}R}$

Sequence rule: example

$$\frac{P\{S_1\}Q \quad Q\{S_2\}R}{P\{S_1;S_2\}R}$$

Sequence rule: example

A =

$$\begin{array}{cccc} t = x_{0} & t = x_{0} \\ x = x_{0} & & \{ x \coloneqq y \} & x = y_{0} & & \\ y = y_{0} & & y = y_{0} \end{array}$$

B =

$$\begin{array}{ll} t = x_{0} & t = x_{0} \\ x = y_{0} & & \{ \ y \coloneqq t \ \} & x = y_{0} & & \\ y = y_{0} & & & y = x_{0} \end{array}$$

7/27/2009

If rule

$\frac{P \& b \{S_1\} Q \quad P \& \neg b \{S_2\} Q}{P \{ \text{if (b) then } S_1 \text{ else } S_2 \} Q}$

If rule: example

 $\frac{P \& b \{S_1\} Q \quad P \& \neg b \{S_2\} Q}{P \{ \text{if (b) then } S_1 \text{ else } S_2 \} Q}$

$$\frac{\Rightarrow}{\dots} \frac{\{x \coloneqq -x\}}{\{x \coloneqq -x\}} \xrightarrow{x = |x_0|} \Rightarrow \frac{\Rightarrow}{\dots} \frac{\{x \coloneqq x\}}{\{x \coloneqq x\}} \xrightarrow{x = |x_0|} \Rightarrow \frac{x = 0}{(x \equiv 0)}$$

$$\frac{\{\text{if } x < 0 \\ x \equiv x_0 \\ \text{then } x \coloneqq -x \\ \text{else } x \coloneqq x\}} \xrightarrow{x = |x_0|} \Rightarrow \frac{x = |x_0|}{(x \coloneqq x)} \xrightarrow{x = |x_0|} \Rightarrow \frac{x = x_0}{(x \coloneqq x)}$$

while rule

$\frac{P\&b\{S\}P}{P\{while\,(b)\,S\}P\&\neg b}$

while rule: example

 $\frac{P\&b\{S\}P}{P\{while\,(b)\,S\}P\&\neg b}$

s = 0; i = 0
{ while (i < n) {
s := s+i;
i := i+1;
}
⇒
$$s = \sum_{j=0}^{i-1} j \& i = n$$

Comments on Hoare logic

- Proofs in Hoare logic are *almost* syntax-directed, *i.e.*, almost have the same shape as the program being proved.
 - The only exceptions are the uses of the rule of consequence.
- Applying Hoare rules is largely mechanical given A and Q, most of the proof (including P) can be generated automatically.
 - Creativity is required mainly in determining the invariant in a while loop, because Q may not have the form "P & ¬b".
 - A formula of that form needs to be found (after which the rule of consequence can be used, proving P & ¬b ⇒ Q).

Example: gcd algorithm

$$a > 0 \& b > 0 \& a = a_0 \& b = b_0 \{$$

while $(a \neq b)$
if $(a > b)$ then $a := a - b;$
else $b := b - a;$
 $a = gcd(a_0, b_0)$