
CS 421 Lecture 22: Operational semantics

� Announcements

� Lecture outline

� Operational semantics of OCaml

� OSsubst: substitution model

� OSclo: closure model

� OSstate: closure model + state

7/22/2009 1

Announcements

� MP8 has been posted

� Higher-order functions

� Last (real) MP

� Reminder: 4-unit grad projects

� Status report due tomorrow

7/22/2009 2

Operational Semantics of OCaml

� Present three systems

� OSsubst : substitution model

� OSclo : closure model

� OSstate : closure model, plus state

� In all systems, start with removing let’s and letrec’s as
follows:follows:

� let x = e in e’ => (fun x -> e’) e

� let rec f = e in e’ => (fun f -> e’) (rec f = e)

� Here, “rec f = e” is a new expression added just for the
operational semantics.

� Note: e must be an abstraction.

7/22/2009 3

OSsubst

� Just like OSsimp, but with recursion.

� Expressions:

� consts (not higher order), vars, application, abstraction, built-in
function calls: e1 ⊕ e2

� Note: Partial application of built-ins is not allowed. This implies
that in an application e1 e2, e1 must reduce to a user-defined

⊕

that in an application e1 e2, e1 must reduce to a user-defined
function.

� Values:

� consts, (closed) abstractions

� Judgments:

� e ⇓ v (e closed)

7/22/2009 4

Axioms

� (Const)

� (Abstr)

kk ⇓

exex →⇓→ fun fun

� (Rec)

7/22/2009 5

]/ rec[rec fefeef =⇓=

Remember: e is an abstraction

Rules of infrerence (same as Ossimp)

� (δ rules)

� (if-true)

vee

vvvveve

⇓⊕

⊕=⇓⇓

21

212211

veee

vetruee

⇓

⇓⇓ 21

 else then if

� (if-false)

7/22/2009 6

veee ⇓321 else then if

veee

vefalsee

⇓

⇓⇓

321

31

 else then if

Never gave these

in OSsimp

Rules of infrerence (cont.)

� (application)

'

']/[fun

21

21

vee

vxveveexe

⇓

⇓⇓→⇓

7/22/2009 7

Example

let rec f = fun n -> if n=1 then 1 else n*f(n-1) in f(2) ⇓ 2

7/22/2009 8

OSclo

� Same expressions; same translation of let and letrec.

� Definition:

� Environments (notated η): map from variable to value

� Closures = Expression × Env (notated <e, η>)

� Note that there is a circularity here: Env’s contain closures and
closures contain env’s. We’ll just keep this informal.

7/22/2009 9

must be an

abstraction
must contain a value for every

free variable in expression

Axioms of OSclo

� (Const) (Var)

� (Abstr)

kk ⇓,η

ηη ,fun fun , exex →⇓→

)(, xx ηη ⇓

� (Rec)

7/22/2009 10

[]',' where

 ', rec ,

ηηη

ηη

ef

eef

→=

⇓=

Again, be informal about this.

Also, again note that e is an abstraction.

Rules of infrerence

� (δ)

� (App)

vee

vvvveve

⇓⊕

⊕=⇓⇓

21

212211

,

,,

η

ηη

� (App)

7/22/2009 11

',

'][',',fun ,

21

21

vee

vvxveexe

⇓

⇓→⇓→⇓

η

ηηηη

Example

7/22/2009 12

Example

7/22/2009 13

Example

7/22/2009 14

Example

7/22/2009 15

Example

7/22/2009 16

OSstate

� Add:

� Locations

� Notated ℓ, ℓ’, ℓ1, etc.

� Infinite, unstructured set of atoms

� State

� Notated σ� Notated σ

� Map from locations to values

� Values: Constants, locations, closures

� Judgments:

σ,η - e ⇓ v,σ′

7/22/2009 17

├

Axioms and rules of inference

� All rules are same as OSclo, but “thread” state through
subcomputation. States are never captured in closures.

� (Const) (Var)σησ ,, kk ⇓−├ σηησ),(, xx ⇓−├

� (Abstr)

� (δ)

7/22/2009 18

σηησ ,,fun fun , exex →⇓→−├

221

212221111

,,

,,,,

σησ

σησσησ

vee

vvvveve

⇓⊕−

⊕=⇓−⇓−├ ├

├

Axioms and rules of inference

� New rules for operators

� (Deref)
',! ,

'location a ',,

σησ

σσησ

ve

ve

⇓−

=⇓− ll├

├

� (Assign)

� (Ref)

7/22/2009 19

][''(),: ,

'',,'',,

21

21

vee

vee

→⇓=−

⇓−⇓−

l

l

σησ

σησσησ ├

├

├

][', ref ,

locationfresh a ',,

ve

ve

→⇓−

⇓−

ll

l

σησ

σησ ├

├

unique value of type unit

Example

7/22/2009 20

Example

7/22/2009 21

Example

7/22/2009 22

Example

7/22/2009 23

Example

7/22/2009 24

Example

7/22/2009 25

Example

7/22/2009 26

