CS 421 Lecture 22: Operational semantics

- Announcements
- Lecture outline
- Operational semantics of OCaml
- OSsubst: substitution model
- OSco: closure model
- OSstate: closure model + state

Announcements

- MP8 has been posted
- Higher-order functions
- Last (real) MP
- Reminder: 4-unit grad projects
- Status report due tomorrow

Operational Semantics of OCaml

- Present three systems
- OS $_{\text {subst }}$: substitution model
- OS $_{\text {clo }}$: closure model
- OS $_{\text {state }}$: closure model, plus state
- In all systems, start with removing let's and letrec's as follows:
- let $x=e$ in $e^{\prime}=>$ (fun $\left.x->e^{\prime}\right) e$
- let rec $f=e$ in $e^{\prime}=>\left(f u n f->e^{\prime}\right)(r e c f=e)$
- Here, "rec $f=e$ " is a new expression added just for the operational semantics.
- Note: e must be an abstraction.
- Just like OSsimp, but with recursion.
- Expressions:
- consts (not higher order), vars, application, abstraction, built-in function calls: $e_{1} \oplus e_{2}$
- Note: Partial application of built-ins is not allowed. This implies that in an application $e_{1} e_{2}, e_{1}$ must reduce to a user-defined function.
- Values:
- consts, (closed) abstractions
- Judgments:
- $\mathrm{e} \Downarrow \mathrm{v}$ (e closed)

Axioms

- (Const) $\overline{k \Downarrow k}$
- (Abstr)
fun $x \rightarrow e \Downarrow$ fun $x \rightarrow e$
- (Rec)

$$
\overline{\operatorname{rec} f=e \Downarrow e[\operatorname{rec} f=e / f]}
$$

Remember: e is an abstraction

Rules of infrerence (same as $\mathrm{Os}_{\text {simp }}$)

- (δ rules $) \frac{e_{1} \Downarrow v_{1} e_{2} \Downarrow v_{2} \quad v=v_{1} \oplus v_{2}}{e_{1} \oplus e_{2} \Downarrow v}$
- (if-true) $\frac{e_{1} \Downarrow_{\text {true }} \quad e_{2} \Downarrow_{v}}{\text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \Downarrow_{v}}$
- (if-false) $\frac{e_{1} \Downarrow \text { false } e_{3} \Downarrow v}{\text { if } e_{1} \text { then } e_{2} \text { else } e_{3} \Downarrow v}$

Rules of infrerence (cont.)

- (application)

$$
\frac{e_{1} \Downarrow \text { fun } x \rightarrow e \quad e_{2} \Downarrow v \quad e[v / x] \Downarrow v^{\prime}}{e_{1} e_{2} \Downarrow v^{\prime}}
$$

Example

let rec $f=$ fun $n->$ if $n=1$ then 1 else $n^{* f(n-1)}$ in $f(2) \Downarrow 2$

- Same expressions; same translation of let and letrec.
- Definition:
- Environments (notated η): map from variable to value
- Closures $=$ Expression \times Env (notated $<e, \eta>$)

- Note that there is a circularity here: Env's contain closures and closures contain env's. We'll just keep this informal.

Axioms of $\mathrm{OS}_{\text {clo }}$

- (Const) $\overline{\eta, k \Downarrow k} \quad$ (Var) $\overline{\eta, x \Downarrow \eta(x)}$
- (Abstr) $\overline{\eta \text {, fun } x \rightarrow e \Downarrow\langle\text { fun } x \rightarrow e, \eta\rangle}$
- (Rec)
$\bar{\eta}$, rec $f=e \Downarrow\left\langle e, \eta^{\prime}\right\rangle$
where $\eta^{\prime}=\eta\left[f \rightarrow\left\langle e, \eta^{\prime}\right\rangle\right]$

Again, be informal about this.
Also, again note that e is an abstraction.

Rules of infrerence

- ($\delta) \frac{\eta, e_{1} \Downarrow v_{1} \quad \eta, e_{2} \Downarrow v_{2} \quad v=v_{1} \oplus v_{2}}{\eta, e_{1} \oplus e_{2} \Downarrow v}$
- (App)

$$
\frac{\eta, e_{1} \Downarrow\left\langle\text { fun } x \rightarrow e, \eta^{\prime}\right\rangle \quad \eta, e_{2} \Downarrow v \quad \eta^{\prime}[x \rightarrow v] \Downarrow v^{\prime}}{\eta, e_{1} e_{2} \Downarrow v^{\prime}}
$$

Example

$$
\varnothing \text {, (fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) 4 \Downarrow 7
$$

Example

$$
\frac{\varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) \Downarrow<\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3, \varnothing>}{\overline{\varnothing, 4 \Downarrow 4}} \overline{\mathrm{~A},(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) 4 \Downarrow 7}
$$

Example

$$
\begin{gathered}
\mathrm{A}=[\mathrm{x}: 4],(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3 \Downarrow 7 \\
\overline{\varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) \Downarrow<\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3, \varnothing>} \quad \overline{\varnothing, 4 \Downarrow 4} \quad \mathrm{~A} \\
\hline \varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x} \rightarrow \mathrm{y}) 3) 4 \Downarrow 7
\end{gathered}
$$

Example

$$
\begin{array}{lll}
\hline \frac{[\mathrm{x}: 4] \text {, (fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) \Downarrow<\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y},[\mathrm{x}: 4]>}{} & \overline{[\mathrm{x}: 4], 3 \Downarrow 3} & \mathrm{~B} \\
\hline \mathrm{~A}=[\mathrm{x}: 4] \text {, (fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3 \Downarrow 7 \\
\hline \overline{\varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) \Downarrow<\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3, \varnothing>} & \overline{\varnothing, 4 \Downarrow 4} & \mathrm{~A} \\
\hline \varnothing, \text { (fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) 4 \Downarrow 7
\end{array}
$$

Example

$$
\frac{\overline{[\mathrm{x}: 4, \mathrm{y}: 3], \mathrm{x} \Downarrow 4} \quad \overline{[\mathrm{x}: 4, \mathrm{y}: 3], \mathrm{y} \Downarrow 3}}{\mathrm{~B}=[\mathrm{x}: 4, \mathrm{y}: 3], \mathrm{x}+\mathrm{y} \Downarrow 7}
$$

$$
\begin{array}{ccc}
\hline[\mathrm{x}: 4],(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) \Downarrow<\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y},[\mathrm{x}: 4]> & \overline{\mathrm{x}: 4], 3 \Downarrow 3} & \mathrm{~B} \\
\hline \mathrm{~A}=[\mathrm{x}: 4],(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3 \Downarrow 7 \\
\hline \overline{\varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) \Downarrow<\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3, \varnothing>} & \overline{\varnothing, 4 \Downarrow 4} & \mathrm{~A} \\
\hline \varnothing,(\text { fun } \mathrm{x} \rightarrow(\text { fun } \mathrm{y} \rightarrow \mathrm{x}+\mathrm{y}) 3) 4 \Downarrow 7
\end{array}
$$

$\mathrm{OS}_{\text {state }}$

- Add:
- Locations
- Notated $\ell, \ell^{\prime}, \ell_{1}$ etc.
- Infinite, unstructured set of atoms
- State
- Notated σ
- Map from locations to values
- Values: Constants, locations, closures
- Judgments:

$$
\sigma, \eta \vdash \mathrm{e} \Downarrow \mathrm{v}, \sigma^{\prime}
$$

Axioms and rules of inference

- All rules are same as $\mathrm{OS}_{\mathrm{clo}}$, but "thread" state through subcomputation. States are never captured in closures.
- (Const) $\overline{\sigma, \eta \vdash k \Downarrow k, \sigma} \quad$ (Var) $\overline{\sigma, \eta \vdash x \Downarrow \eta(x), \sigma}$
- (Abstr) $\overline{\sigma, \eta \vdash \text { fun } x \rightarrow e \Downarrow\langle\text { fun } x \rightarrow e, \eta\rangle, \sigma}$
- (δ)

$$
\frac{\sigma, \eta \vdash e_{1} \Downarrow v_{1}, \sigma_{1} \quad \sigma_{1}, \eta+e_{2} \Downarrow v_{2}, \sigma_{2} \quad v=v_{1} \oplus v_{2}}{\sigma, \eta \vdash e_{1} \oplus e_{2} \Downarrow v, \sigma_{2}}
$$

Axioms and rules of inference

- New rules for operators
- (Deref)

$$
\frac{\sigma, \eta \vdash e \Downarrow \ell, \sigma^{\prime} \quad \ell \text { a location } \quad \sigma^{\prime}=v}{\sigma, \eta \vdash!e \Downarrow v, \sigma^{\prime}}
$$

- (Assign)

$$
\frac{\sigma, \eta \vdash e_{1} \Downarrow \ell, \sigma^{\prime} \quad \sigma^{\prime}, \eta \vdash e_{2} \Downarrow v, \sigma^{\prime \prime}}{\sigma, \eta \vdash e_{1}:=e_{2} \Downarrow(), \sigma^{\prime}[\ell \rightarrow v]}
$$

unique value of type unit

- (Ref)

$$
\frac{\sigma, \eta \vdash e \Downarrow v, \sigma^{\prime} \quad \ell \text { a fresh location }}{\sigma, \eta \vdash \operatorname{ref} e \Downarrow \ell, \sigma^{\prime}[\ell \rightarrow v]}
$$

Example

$$
\{\ell: 0\},\{\mathrm{x}: l\} \vdash(\text { fun } \mathrm{y} \rightarrow(\text { fun } \mathrm{z} \rightarrow!\mathrm{x})(\mathrm{y}:=!\mathrm{y}+1)) \mathrm{x} \downarrow 1,\{\ell: 1\}
$$

Example

$\{0: 0\},\{\mathrm{x}: \ell\} \vdash\left(\right.$ fun $\mathrm{y} \rightarrow \ldots$) $\left.\Downarrow_{<(\text {fun }} \mathrm{y} \rightarrow \ldots\right),\{\mathrm{x}: \ell\}>,\{\ell: 0\}$	$\{\ell: 0\},\{\mathrm{x}: \ell\} \vdash \mathrm{x} \downarrow{ }^{\text {l }}$, \{ $\{\mathrm{l}: 0\}$

Example

$$
\begin{aligned}
& \overline{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash(\text { fun } \mathrm{z} \rightarrow \text { ! } \mathrm{x}) \Downarrow<\text { fun } \mathrm{z} \rightarrow \text { !x, }\{\mathrm{x}: \ell, \mathrm{y}: \ell\}>,\{\ell: 0\} \quad \text { B } \quad \text { C } \mathrm{C}} \\
& A=\{\ell: 0\},\{x: \ell, y: \ell\} \vdash(\text { fun } z \rightarrow!x)(y:=!y+1) \Downarrow 1,\{\ell: 1\}
\end{aligned}
$$

$$
\begin{aligned}
& \{\ell: 0\},\{\mathrm{x}: \ell\} \vdash(\text { fun } \mathrm{y} \rightarrow(\text { fun } \mathrm{z} \rightarrow \text { ! } \mathrm{x})(\mathrm{y}:=!\mathrm{y}+1)) \mathrm{x} \downarrow 1,\{\ell: 1\}
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
& \frac{\overline{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash \mathrm{y} \Downarrow \ell,\{\ell: 0\}} \quad\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash!\mathrm{y}+1 \Downarrow_{1,\{l: 0\}}^{\mathrm{B}=\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash \mathrm{y}:=!\mathrm{y}+1 \Downarrow(),\{\ell: 1\}}}{} \\
& \{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash(\text { fun } \mathrm{z} \rightarrow \text { ! }) \downarrow<\text { fun } \mathrm{z} \rightarrow \text { !x, }\{\mathrm{x}: \ell, \mathrm{y}: \ell\}>,\{\ell: 0\} \quad \text { B } \quad \text { C } \\
& A=\{\ell: 0\},\{x: \ell, y: \ell\} \vdash(\text { fun } z \rightarrow!x)(y:=!y+1) \downarrow 1,\{\ell: 1\}
\end{aligned}
$$

$$
\begin{aligned}
& \{\ell: 0\},\{\mathrm{x}: \ell\} \vdash(\text { fun } \mathrm{y} \rightarrow(\text { fun } \mathrm{z} \rightarrow \text { ! } \mathrm{x})(\mathrm{y}:=!\mathrm{y}+1)) \mathrm{x} \downarrow 1,\{\ell: 1\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \overline{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash \mathrm{y} \downarrow \ell,\{\ell: 0\}} \frac{\{\ell: 0\}(\ell)=0}{\frac{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash: \mathrm{y} \Downarrow 0,\{\ell: 0\}}{}} \overline{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash 1 \Downarrow 1,\{\ell: 0\}} \\
& \frac{\overline{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash \mathrm{y} \Downarrow \ell,\{\ell: 0\}}}{\mathrm{B}=\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash \mathrm{y}:=!\mathrm{y}+1 \Downarrow(),\{\ell: 1\}} \\
& \frac{\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash(\text { fun } \mathrm{z} \rightarrow \text { ! } \mathrm{x}) \downarrow<\text { fun } \mathrm{z} \rightarrow!\mathrm{x},\{\mathrm{x}: \ell, \mathrm{y}: \ell\}>,\{\ell: 0\}}{\mathrm{A}=\{\ell: 0\},\{\mathrm{x}: \ell, \mathrm{y}: \ell\} \vdash(\text { fun } \mathrm{z} \rightarrow!\mathrm{x})(\mathrm{y}:=!\mathrm{y}+1) \quad \mathrm{D} 1,\{\ell: 1\}}
\end{aligned}
$$

$$
\begin{aligned}
& \{\ell: 0\},\{\mathrm{x}: \ell\} \vdash(\text { fun } \mathrm{y} \rightarrow(\text { fun } \mathrm{z} \rightarrow \text { !x) }(\mathrm{y}:=!\mathrm{y}+1)) \mathrm{x} \downarrow 1,\{\ell: 1\}
\end{aligned}
$$

Example

$$
\frac{\{:: 1\},\{\mathrm{x}: \ell, \mathrm{y}: \ell, \mathrm{z}:(0) \vdash \mathrm{x} \Downarrow \ell,\{\ell: 1\}}{\mathrm{C}=\{\ell: 1\},\{\mathrm{x}: \mathrm{Q}, \mathrm{y}: \ell, \mathrm{z}: 0\} \vdash \mid \mathrm{x} \Downarrow 1,\{\ell: 1\}}
$$

