CS 421 Lecture 22: Operational semantics

- Announcements
- Lecture outline
 - Operational semantics of OCaml
 - OSsubst: substitution model
 - OS_{clo}: closure model
 - OS_{state}: closure model + state

Announcements

- MP8 has been posted
 - Higher-order functions
 - Last (real) MP
- Reminder: 4-unit grad projects
 - Status report due tomorrow

Operational Semantics of OCaml

- Present three systems
 - OS_{subst} : substitution model
 - OS_{clo} : closure model
 - OS_{state} : closure model, plus state
- In all systems, start with removing let's and letrec's as follows:
 - let x = e in e' => (fun x -> e') e
 - let rec f = e in e' => (fun f -> e') (rec f = e)
- Here, "rec f = e" is a new expression added just for the operational semantics.
 - Note: e must be an abstraction.

OS_{subst}

- Just like OSsimp, but with recursion.
- Expressions:
 - consts (not higher order), vars, application, abstraction, built-in function calls: $e_1 \oplus e_2$
 - Note: Partial application of built-ins is not allowed. This implies that in an application e₁ e₂, e₁ must reduce to a user-defined function.
- Values:
 - consts, (closed) abstractions
- Judgments:
 - e ↓ v (e closed)

Axioms

• (Const)
$$\overline{k \Downarrow k}$$

• (Abstr)
$$fun \ x \to e \Downarrow fun \ x \to e$$

• (Rec)

$$rec f = e \Downarrow e [rec f = e / f]$$
Remember: e is an abstraction

Rules of infrerence (same as Os_{simp})

• (
$$\delta$$
 rules) $\underline{e_1 \Downarrow v_1} \quad \underline{e_2 \Downarrow v_2} \quad v = v_1 \oplus v_2$
 $e_1 \oplus e_2 \Downarrow v$

• (if-true)
$$\frac{e_1 \Downarrow true}{if e_1 then e_2} else e_3 \Downarrow v$$

• (if-false) $\frac{e_1 \Downarrow false}{if e_1 then e_2} else e_3 \Downarrow v$

Rules of infrerence (cont.)

• (application)

$$\frac{e_1 \Downarrow \text{fun } x \to e \quad e_2 \Downarrow v \quad e[v / x] \Downarrow v'}{e_1 e_2 \Downarrow v'}$$

let rec f = fun n -> if n=1 then 1 else n*f(n-1) in f(2) \Downarrow 2

- Same expressions; same translation of let and letrec.
- Definition:
 - Environments (notated η): map from variable to value
 - Closures = Expression × Env (notated <e, η >)

 Note that there is a circularity here: Env's contain closures and closures contain env's. We'll just keep this informal.

Axioms of OS_{clo}

• (Const)
$$\eta, k \Downarrow k$$
 (Var) $\eta, x \Downarrow \eta(x)$

• (Abstr)
$$\eta$$
, fun $x \to e \Downarrow \langle \text{fun } x \to e, \eta \rangle$

• (Rec)
$$\eta$$
, rec $f = e \Downarrow \langle e, \eta' \rangle$
where $\eta' = \eta [f \rightarrow \langle e, \eta' \rangle]$
Again, be informal about this.
Also, again note that e is an abstraction.

Rules of infrerence

• (\delta)
$$\underline{\eta, e_1 \Downarrow v_1} \quad \underline{\eta, e_2 \Downarrow v_2} \quad v = v_1 \oplus v_2$$

 $\overline{\eta, e_1 \oplus e_2 \Downarrow v}$

• (App)

$$\frac{\eta, e_1 \Downarrow \langle \text{fun } x \to e, \eta' \rangle \quad \eta, e_2 \Downarrow v \quad \eta' [x \to v] \Downarrow v'}{\eta, e_1 e_2 \Downarrow v'}$$

\emptyset , (fun x \rightarrow (fun y \rightarrow x+y)3)4 \Downarrow 7

 $\mathbf{A} = [x:4], (\text{fun } y \rightarrow x+y)3 \Downarrow 7$

 \emptyset , (fun x \rightarrow (fun y \rightarrow x+y)3) \Downarrow <fun x \rightarrow (fun y \rightarrow x+y)3, \emptyset > $\overline{\emptyset$, 4 \Downarrow 4 A

$$\emptyset$$
, (fun x \rightarrow (fun y \rightarrow x+y)3)4 \Downarrow 7

$$\frac{[x:4], (\operatorname{fun} y \to x+y) \Downarrow <\operatorname{fun} y \to x+y, [x:4] > [x:4], 3 \Downarrow 3 \qquad \mathbf{B}}{\mathbf{A} = [x:4], (\operatorname{fun} y \to x+y)3 \Downarrow 7}$$

$$\overline{\varnothing, (\operatorname{fun} x \to (\operatorname{fun} y \to x+y)3) \Downarrow <\operatorname{fun} x \to (\operatorname{fun} y \to x+y)3, \varnothing > \qquad \overline{\varnothing, 4 \Downarrow 4} \qquad \mathbf{A}}$$

$$\emptyset$$
, (fun x \rightarrow (fun y \rightarrow x+y)3)4 \Downarrow 7

.

$$x:4,y:3], x \Downarrow 4 \qquad [x:4,y:3], y \Downarrow 3$$

B = [x:4,y:3], x+y \Downarrow 7

$$[x:4], (fun y \to x+y) \Downarrow < fun y \to x+y, [x:4] > [x:4], 3 \Downarrow 3 B$$
$$\mathbf{A} = [x:4], (fun y \to x+y)3 \Downarrow 7$$

OS_{state}

- Add:
 - Locations
 - Notated ℓ , ℓ' , ℓ_1 , etc.
 - Infinite, unstructured set of atoms
 - State
 - Notated σ
 - Map from locations to values
 - Values: Constants, locations, closures
 - Judgments:

 $\sigma,\eta \models e \Downarrow v,\sigma'$

Axioms and rules of inference

 All rules are same as OS_{clo}, but "thread" state through subcomputation. States are never captured in closures.

• (Const)
$$\overline{\sigma, \eta \vdash k \Downarrow k, \sigma}$$
 (Var) $\overline{\sigma, \eta \vdash x \Downarrow \eta(x), \sigma}$

(Abstr)
$$\sigma, \eta \vdash \text{fun } x \to e \Downarrow \langle \text{fun } x \to e, \eta \rangle, \sigma$$

• (\delta)
$$\frac{\sigma, \eta \vdash e_1 \Downarrow v_1, \sigma_1 \quad \sigma_1, \eta \vdash e_2 \Downarrow v_2, \sigma_2 \quad v = v_1 \oplus v_2}{\sigma, \eta \vdash e_1 \oplus e_2 \Downarrow v, \sigma_2}$$

Axioms and rules of inference

New rules for operators

• (Deref)
$$\frac{\sigma, \eta \vdash e \Downarrow \ell, \sigma' \quad \ell \text{ a location } \sigma' = v}{\sigma, \eta \vdash !e \Downarrow v, \sigma'}$$

• (Assign)
$$\frac{\sigma, \eta \vdash e_1 \Downarrow \ell, \sigma' \quad \sigma', \eta \vdash e_2 \Downarrow v, \sigma''}{\sigma, \eta \vdash e_1 \coloneqq e_2 \Downarrow (), \sigma''[\ell \to v]}$$

• (Ref)
$$\frac{\sigma, \eta \vdash e \Downarrow v, \sigma' \quad \ell \text{ a fresh location}}{\sigma, \eta \vdash \text{ref } e \Downarrow \ell, \sigma'[\ell \to v]}$$

 $\{\ell:0\}, \{x:\ell\} \vdash (\text{fun } y \rightarrow (\text{fun } z \rightarrow !x)(y:=!y+1))x \Downarrow 1, \{\ell:1\}$

7/22/2009

 $\overline{\{\ell:0\},\{x:\ell\}\vdash(\text{fun } y \to \ldots)} \Downarrow <(\text{fun } y \to \ldots),\{x:\ell\}>,\{\ell:0\} \qquad \{\ell:0\},\{x:\ell\}\vdash x \Downarrow \ell,\{\ell:0\} \qquad \textbf{A}$

 $\{\ell:0\}, \{x:\ell\} \vdash (\text{fun } y \rightarrow (\text{fun } z \rightarrow !x)(y:=!y+1))x \Downarrow 1, \{\ell:1\}$

21

7/22/2009

$$\overline{\{\ell:0\}, \{x:\ell, y:\ell\} \vdash (\operatorname{fun} z \to !x) \Downarrow < \operatorname{fun} z \to !x, \{x:\ell, y:\ell\} >, \{\ell:0\} \} } \mathbf{B} \mathbf{C}$$

$$\overline{\mathbf{A} = \{\ell:0\}, \{x:\ell, y:\ell\} \vdash (\operatorname{fun} z \to !x)(y:=!y+1) \Downarrow 1, \{\ell:1\} }$$

$$\overline{\{\ell:0\}, \{x:\ell\} \vdash (\operatorname{fun} y \to ...) \Downarrow < (\operatorname{fun} y \to ...), \{x:\ell\} >, \{\ell:0\} \} } \overline{\{\ell:0\}, \{x:\ell\} \vdash x \Downarrow \ell, \{\ell:0\} } \mathbf{A}$$

$$\overline{\{\ell:0\}, \{x:\ell\} \vdash (\operatorname{fun} y \to (\operatorname{fun} z \to !x)(y:=!y+1))x \Downarrow 1, \{\ell:1\} }$$

$\mathbf{B} = \{ \ell: 0 \}, \{ x: \ell, y: \ell \} \vdash y: = !y+1 \Downarrow 0, \{ \ell: 1 \}$		
$\overline{\{\ell:0\},\{x:\ell,y:\ell\}\vdash(\text{fun } z \to !x)} \Downarrow < \text{fun } z \to !x,\{x:\ell,y:\ell\}>,\{\ell:0\}$	В	С
$A = \{\ell:0\}, \{x:\ell, y:\ell\} \vdash (\text{fun } z \rightarrow !x)(y:=!y+1)$	$ U1, \{\ell:1\} $	}
$\overline{\{\ell:0\}, \{x:\ell\} \vdash (\text{fun } y \to \dots) \Downarrow <(\text{fun } y \to \dots), \{x:\ell\} >, \{\ell:0\}, \ell\}, \{\ell:0\}, \{\ell:0\}, \{\ell:0\}, \ell\}, \{\ell:0\}, \{\ell:0\}, \ell\}, \ell\}, \{\ell:0\}, \ell\}, \{\ell:0\}, \ell\}, \ell\}, \ell\}, \ell\}, \ell\}, \ell\}, \ell\}, \ell\}, \ell\}, \ell$	$\mathbf{x}: \emptyset \} \vdash \mathbf{x} \Downarrow \emptyset$	<i>∂</i> ,{∅:0} A
$\{\ell:0\}, \{x:\ell\} \vdash (\text{fun } y \rightarrow (\text{fun } z \rightarrow !x)(y:=!y+1)$))x ↓1,{	0:1}
(22/2009)))⊼ ∨1, (·	0.15

$\overline{\{\ell:0\},\{x:\ell,y:\ell\}\vdash y \Downarrow \ell,\{\ell:0\}}$	$\{ l:0 \}, \{ r \}$	x:ℓ,y:ℓ}⊢!y+	$1 \Downarrow 1, \{\ell:0\}$	
$\mathbf{B} = \{\ell:0\}, \{x:\ell, y:\ell\}$	$\emptyset\} \vdash \mathbf{y} := \mathbf{y} + 1 \Downarrow 0, \{$	{0:1}		
$\{\emptyset:0\}, \{x: \ell, y: \ell\} \vdash (\text{fun } z \rightarrow !x) \Downarrow < \text{fun } z$	$z \rightarrow !x, \{x: \ell, y: \ell\} >$	·,{ℓ:0}	B C	
$A = \{\ell:0\}, \{x:\ell, y:\ell\} \vdash (f$	un z →!x)(y:=	=!y+1) ⊎1,	{ l :1}	
$\overline{\{\ell:0\},\{x:\ell\}\vdash(\text{fun } y \to \dots)} \Downarrow <(\text{fun } y \to \dots)$.), {x:l}>,{l:0}	$\overline{\{\ell:0\},\{\mathbf{x}:\ell\}}$	$\vdash_{\mathbf{X}} \Downarrow \ell, \{\ell:0\}$	А
	(fun $z \rightarrow !x$)(y			

$\{\ell:0\}, \{x:\ell, y:\ell\} \vdash$	y ↓ℓ,{ℓ:0}	{ l :0}(l)=	=0		
{!	ℓ:0},{x:ℓ,y:ℓ}⊢	!y ↓ 0,{ ℓ :0}	$\{\ell:0\},\$	{x:ℓ,y:ℓ}	⊢1 ↓1,{0:0
$\overline{\{\ell:0\},\{x:\ell,y:\ell\}\vdash y} \Downarrow \ell,\{\ell\}$:0}	$\{\ell:0\},\{2,2,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,$	x:ℓ,y:ℓ}⊢!	y+1 ↓1,	{ l :0}
			(0.1)		
$\mathbf{B} = \{0\}$	$:0\},\{x:\ell,y:\ell\}\vdash $	$y := !y + 1 \psi(),$	{1:1}		
				_	
$\mathbf{B} = \{ \emptyset \\ \{ \emptyset: 0 \}, \{ x: \emptyset, y: \emptyset \} \vdash (\text{fun } z \rightarrow z \} $				В	С
	•!x) ∜ <fun td="" z→!<=""><td>x,{x:0,y:0}></td><td>>,{0:0}</td><td></td><td>С</td></fun>	x,{x:0,y:0}>	>,{0:0}		С
$\{\ell:0\}, \{x:\ell, y:\ell\} \vdash (\text{fun } z \rightarrow$	•!x) ∜ <fun td="" z→!<=""><td>x,{x:0,y:0}></td><td>>,{0:0}</td><td></td><td>C</td></fun>	x,{x:0,y:0}>	>,{0:0}		C

$$\{\ell:1\}, \{x:\ell, y:\ell, z:()\} \vdash x \Downarrow \ell, \{\ell:1\} \qquad \{\ell:1\}(\ell)=1$$

 $\mathbf{C} = \{ \ell:1 \}, \{ x: \ell, y: \ell, z: () \} \vdash ! x \Downarrow 1, \{ \ell:1 \}$