CS 421 Lecture 21: The OCaml type system

I —

= Lecture outline
= Polymorphic types, /.e., “type schemes”
Type rules polymorphism — introduced by “let” expression
Examples
Explaining generalization

Reference types in Ocaml
= How they work
= Why they break polymorphism
= The “value restriction”

7/21/2009 1

Tocam — the OCaml type system

Main points about OCaml type system:
= Types contain variables (notated o, B, ...)

= Variables can be generalized in some circumstances;
types with generalized variables are written Vo, B, T,
and called type schemes

= [If a variable’s type is a type scheme, it can be used with
any types substituted for the quantified type variables.

7/21/2009

Example of polymorphic types (type schemes)

R,

= fst: Vo, B. a * B — o.

= When applied to (3, “"ab"), it has type int * string - int;
when applied to ([3], funy -> y+1) it has type int 1ist *

(int - int) — int list.

= CONns: o. o * o — alist

= A user-defined function can have a polymorphic type
only in the body of a let expression where it is the let-
defined name.

7/21/2009 3

Types In Tocami

= Expressions: consts, variables, application, abstraction,
let, letrec

= Types (notated t, 7', 1, etc.) : int | bool | ...

1 — 1 (for any types t and t') | TypeVar

= TypeVar = o, B, ...

= TypeScheme (o, ¢/, etc.) = Va,, ..., a.. (N >0)
(Note: TypeSchemes include types)

* Typeknv (notated I'): map from variables to type
schemes

= Judgments: ' —e: 7

7/21/2009

Axioms of Tyeam

* Tocam NAs just one axiom

(Var) ['(x)=0c 7<0

I'—x:7

= There are no Const axioms; all predefined names are
assumed to be in the initial environment (which we

continue to write, by abuse of notation, as @)

7/21/2009

Axioms of Tyeam

Understanding the Var axiom:

= If a name has a monomorphictype in T, then this works
the same as in Ty,

= If a name has a polymorphic type, then it can be used at
any instance of that type. "t < ¢” means "t is an instance
of 6" — /.e., 1 is obtained from o by substituting types for
type variables.

= The Var rule is an axiom because the assertions above
the line are not judgments in the system.

7/21/2009

Example

fst (3, true)

7/21/2009 7

Rules of inference of Tyem

R,

Application and abstraction rules are the same as in Tg,.
Also add rules for tuples.

(Application) I'-e 77 I'~e,:7
['ee,:T
° I__ . !
(Abstraction) I'[x:7]~e:7
[—funx > e: 7> 7
(Tuple) ['+e :7 Te,:7,

I'—C(e,e,):7,*T,

7/21/2009 8

Rules of inference of Tyem

I —

let and letrec are new:

(let) I'e : T ITx:GENp(T')]~e,: T
I'letx=e¢e 1ne,:T

(letrec) I[x:7']e : 7T ITx:GEN.(T")]+e,:T
I'+letrecx=e 1ne,: 7

7/21/2009 9

Example

letf=funx->x0inf(funy->vy+ 1): int

7/21/2009 10

Example

letf = funx->x0
in (f (funy->y+1),
f (fun n->[n])): int * (int list)

7/21/2009 11

Notes on Tycam

= Asin Tg.,, the structure of a proof is completely
determined by the syntactic structure of the expression

= Judgments always assign types to expressions, never
type schemes. £.g.,

['—fst:Va,f. a*f > «
is not a valid judgment, even though implicitly:

['(fst)=Va,B. a*f —> «

= Every use of a polymorphic name has a specific type.

7/21/2009

12

Generalization in the let rule

= In the let rule, GEN.(t) usually means “quantify over all
type variables in t.” However, consider this case:
letf =funx->(letg=funy->yxingincr, X)ine

= We can type-check the body of f giving x type a.

= Then, g has type (o« — B) — B, which generalizes to Vv, B. (o —
p) — P.

= S0 g incr has type int (with a and B both being int), and f types
as int * a. Generalizing f, it gets type Vo. a — int * a.

= Now, if e contains the expression “f true”, it type checks.
However, f actually requires that x be of type int.

7/21/2009

13

Generalization in the let rule (cont.)

= For this reason, GEN.(t) actually means “quantify over all
type variables in © except those that occur free in T'.”
Then, in this case:
letf =funx-> (letg=funy->yxingincr, X)ine

= If we give x type o, g has type (a« — B) — B, but this generalizes
to VB. (a — B) — B (note there is no quantification over a).

= Now, g incr cannot be typed, because incr has type int — int,
and the closest we can get by instantiating g’s type is a — int.

= To typecheck this term, we would Aave to give x type int,
so f would have type int — int*int, and the call “f true”

would be a type error.

7/21/2009 14

References in OCaml

= OCaml has references, or assignable variables. Unlike
most other languages, dereferencing of references has to
be done explicitly.

= Types: a ref — reference to a value of type o
= Operations:
= ref: a — a ref
= laref - a
= =g ref * a — unit
= We also have ; : o * B — B, which is useful only when
doing imperative programming.

7/21/2009 15

Type-checking references

= Would like to treat these operators as polymorphic, but
consider this example:
leti = fun x -> X
inlet fp = ref I
in (fp := not; (Ifp) 5)

= j gets type Vo. a — «, and then fp would have type Vo. (0 — o)
ref.

= Since it is polymorphic, fp can be used at type (bool — bool) ref
or (int — int) ref, making both uses in the last line type-correct.

= However, the effect is to assign a boolean function to fp and
then apply fp to an int.

7/21/2009 16

Type-checking references (cont.)

= Treating an expression of type o ref as a normal
polymorphic expression has caused a serious error: an

expression that type-checks but has a run-time type
error.

= How can the type system be fixed?

= Easiest method: do not generalize reference expressions at all —
make all refs monomorphic

= Method used by OCaml: “value restriction” — causes some
meaningful polymorphism to fail

7/21/2009 17

The “value restriction”

It turns out that the problem with polymorphic refs can be
solved by making this restriction: the type of an
expression can be generalized only if the expression is a
“syntactic value” — meaning, essentially, that it is either a
constant or an abstraction.

7/21/2009

18

