
CS 421 Lecture 21: The OCaml type system

� Lecture outline

� Polymorphic types, i.e., “type schemes”

� Type rules polymorphism – introduced by “let” expression

� Examples

� Explaining generalization

� Reference types in Ocaml� Reference types in Ocaml

� How they work

� Why they break polymorphism

� The “value restriction”

7/21/2009 1

TOCaml – the OCaml type system

Main points about OCaml type system:

� Types contain variables (notated α, β, …)

� Variables can be generalized in some circumstances;
types with generalized variables are written α, β, … . τ, ∀types with generalized variables are written α, β, … . τ,

and called type schemes

� If a variable’s type is a type scheme, it can be used with
any types substituted for the quantified type variables.

7/21/2009 2

∀

Example of polymorphic types (type schemes)

� fst: α, β. α * β → α.
� When applied to (3, “ab”), it has type int * string → int;

when applied to ([3], fun y -> y+1) it has type int list *
(int → int) → int list.

� cons: α. α * α → α list

∀

� A user-defined function can have a polymorphic type
only in the body of a let expression where it is the let-
defined name.

7/21/2009 3

Types in TOCaml

� Expressions: consts, variables, application, abstraction,
let, letrec

� Types (notated τ, τ’, τn, etc.) : int | bool | …

| τ → τ’ (for any types τ and τ’) | TypeVar

� TypeVar = α, β, … � TypeVar = α, β, …

� TypeScheme (σ, σ’, etc.) = α1, …, αn. τ (n ≥ 0)

(Note: TypeSchemes include types)

� TypeEnv (notated Γ): map from variables to type

schemes

� Judgments:

7/21/2009 4

∀

τ:e−Γ ˫

Axioms of TOCaml

� TOCaml has just one axiom

(Var)

τ

στσ

:

)(

x

x

−Γ

≤=Γ

˫

� There are no Const axioms; all predefined names are
assumed to be in the initial environment (which we

continue to write, by abuse of notation, as ø)

7/21/2009 5

Axioms of TOCaml

Understanding the Var axiom:

� If a name has a monomorphic type in Γ, then this works
the same as in Tsimp

� If a name has a polymorphic type, then it can be used at � If a name has a polymorphic type, then it can be used at
any instance of that type. “τ ≤ σ” means “τ is an instance
of σ” – i.e., τ is obtained from σ by substituting types for

type variables.

� The Var rule is an axiom because the assertions above
the line are not judgments in the system.

7/21/2009 6

Example

fst (3, true)

7/21/2009 7

Rules of inference of TOCaml

Application and abstraction rules are the same as in Tsimp.
Also add rules for tuples.

(Application)

':

:':

21

21

τ

τττ

ee

ee

−Γ

−Γ→−Γ ˫ ˫

˫

(Abstraction)

(Tuple)

7/21/2009 8

21

':fun

':]:[

ττ

ττ

→→−Γ

−Γ

ex

ex ˫

˫

2121

2211

*:),(

::

ττ

ττ

ee

ee

−Γ

−Γ−Γ ˫ ˫

˫

Rules of inference of TOCaml

let and letrec are new:

(let)

τ

τττ

:in let

:)]'(:[':

21

21

eex

eGENxe

=−Γ

−Γ−Γ Γ
˫ ˫

˫

(letrec)

7/21/2009 9

τ

ττττ

:in reclet

:)]'(:[':]':[

21

21

eex

eGENxex

=−Γ

−Γ−Γ Γ˫ ˫

˫

Example

let f = fun x-> x 0 in f (fun y -> y + 1): int

7/21/2009 10

Example

let f = fun x -> x 0

in (f (fun y -> y+1),

f (fun n -> [n])): int * (int list)

7/21/2009 11

Notes on TOCaml

� As in Tsimp, the structure of a proof is completely
determined by the syntactic structure of the expression

� Judgments always assign types to expressions, never
type schemes. E.g.,

αβαβα →∀−Γ * .,:fst˫

is not a valid judgment, even though implicitly:

� Every use of a polymorphic name has a specific type.

7/21/2009 12

αβαβα →∀−Γ * .,:fst˫

αβαβα →∀=Γ * .,)fst(

Generalization in the let rule

� In the let rule, GENΓ(τ) usually means “quantify over all
type variables in τ.” However, consider this case:

let f = fun x -> (let g = fun y -> y x in g incr, x) in e

� We can type-check the body of f giving x type α.

� Then, g has type (α → β)→ β, which generalizes to α, β. (α →∀� Then, g has type (α → β)→ β, which generalizes to α, β. (α →

β)→ β.

� So g incr has type int (with α and β both being int), and f types
as int * α. Generalizing f, it gets type α. α → int * α.

� Now, if e contains the expression “f true”, it type checks.
However, f actually requires that x be of type int.

7/21/2009 13

∀

∀

Generalization in the let rule (cont.)

� For this reason, GENΓ(τ) actually means “quantify over all
type variables in τ except those that occur free in Γ.”
Then, in this case:

let f = fun x -> (let g = fun y -> y x in g incr, x) in e

� If we give x type α, g has type (α → β)→ β, but this generalizes � If we give x type α, g has type (α → β)→ β, but this generalizes
to β. (α → β)→ β (note there is no quantification over α).

� Now, g incr cannot be typed, because incr has type int→ int,
and the closest we can get by instantiating g’s type is α → int.

� To typecheck this term, we would have to give x type int,
so f would have type int → int*int, and the call “f true”

would be a type error.

7/21/2009 14

∀

References in OCaml

� OCaml has references, or assignable variables. Unlike
most other languages, dereferencing of references has to
be done explicitly.

� Types: α ref – reference to a value of type α

� Operations:

� ref: α → α ref

� !: α ref → α

� := α ref * α → unit

� We also have ; : α * β → β, which is useful only when

doing imperative programming.

7/21/2009 15

Type-checking references

� Would like to treat these operators as polymorphic, but
consider this example:

let i = fun x -> x

in let fp = ref I

in (fp := not; (!fp) 5)

� i gets type α. α → α, and then fp would have type α. (α → α)

ref.

� Since it is polymorphic, fp can be used at type (bool→ bool) ref
or (int→ int) ref, making both uses in the last line type-correct.

� However, the effect is to assign a boolean function to fp and
then apply fp to an int.

7/21/2009 16

∀ ∀

Type-checking references (cont.)

� Treating an expression of type α ref as a normal

polymorphic expression has caused a serious error: an
expression that type-checks but has a run-time type
error.

� How can the type system be fixed?� How can the type system be fixed?

� Easiest method: do not generalize reference expressions at all –
make all refs monomorphic

� Method used by OCaml: “value restriction” – causes some
meaningful polymorphism to fail

7/21/2009 17

The “value restriction”

It turns out that the problem with polymorphic refs can be
solved by making this restriction: the type of an
expression can be generalized only if the expression is a
“syntactic value” – meaning, essentially, that it is either a
constant or an abstraction.

7/21/2009 18

