CS 421 Lecture 18: More examples of higherorder functions

- Lecture outline
- Combinator programming
- Representing sets as higher-order functions
- Representing pairs as higher-order functions
- Building comparators using higher-order functions
- Environment/closure model

Review: combinator-style programming

- Can write complex programs by defining a library of higher-order functions and applying them to one another (and to first-order or built-in functions).
- Advantage: ease of creating programs - programs are just expressions
- Example: build a parser by writing "parser combinators."

Review: parser combinators

- Define a parser to be a function from token list -> (token list) option.
- Idea is to define functions that build parsers, rather than building parsers "by hand."
- Parser to recognize a single token:

```
let token s = fun cl -> if cl=[] then None
    else if s=hd cl then Some (tl cl)
    else None;;
let parsex = token 'x';;
```


Review: parser combinators

- "Combinators" to combine parsers into larger parsers:

```
let (++) p q = fun cl -> match p cl with None -> None
    | Some cl' -> q cl';;
let (||) p q = fun cl -> match p cl with None -> q cl
    | Some cl' -> Some cl';;
let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl
        and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;
```


Representing sets as higher-order functions

- Def. A set is a function from values to bool.

```
type intset = int -> bool
```

- E.g.:

```
{2} = fun x -> (x=2)
{2,3} = fun x -> (x=2) or (x=3)
```

- Set operations:

```
(* member: int -> intset -> bool *)
let member n s =
```

(* emptyset: intset *)
let emptyset =

Representing sets as higher-order functions

```
(* add: int -> intset -> intset *)
let add n s =
(* union: intset -> intset -> intset *)
let union s1 s2 =
(* intersection: intset -> intset -> intset *)
let intersection s1 s2 =
    (* remove: int -> intset -> intset *)
let remove n s =
```


Representing sets as higher-order functions

```
(* complement: intset -> intset *)
let complement s =
(* intsAbove: int -> intset *)
let intsAbove n =
```

- Note: cannot list elements

Representing pairs as higher-order functions

- Def. A pair is a value p with a constructor pair: $a->\beta$-> pair, and functions fst: pair -> a and snd: pair -> β such that fst(pair ab) $=a$ and snd(pair $a b)=b$.
- Pair operations:

```
let pair a b =
```

let fst $\mathrm{p}=$
let snd $\mathrm{p}=$

Building comparators using higher-order functions

- Def. A comparator is a function of type $a * a->$ bool.
- E.g., (>) and (=) are comparators
- Can build specific comparators, e.g.:

```
fun lexorder2 (x,y) ( }\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime})=x<\mp@subsup{x}{}{\prime}\mathrm{ or (x=x' & y<y');;
lexorder2 ('a','b') ('a','c')
lexorder2 ('a','z') ('b','a')
lexorder2 ('b','b') ('a','c')
```


Building comparators using higher-order functions

- But it's more fun to build them using higher-order functions:

```
let or_comp comp1 comp2 = fun (x, y) ->
    (comp1 (x, y)) or (comp2 (x, y))
let lte = or_comp (<) (=)
let and_comp comp1 comp2 = fun (x, y) ->
    (comp1 (x, y)) & (comp2 (x, y))
```


Building comparators using higher-order functions

```
let lex_comp comp1 comp2 =
    fun (x,y) (x', y') -> compl (x, x')
                                or (x=x' & comp2 (y, y'))
let lexorder2 = lex_comp (<) (<);;
```


Building comparators using higher-order functions

```
let lex_comp_list comp =
        let rec aux lis1 lis2 = match (lis1, lis2) with
            ([], _) -> true
            | (_, []) -> false
            | ((x::x'), (y::y')) -> comp x y
                or (x=y & aux x' y')
        in aux;;
let alphalex = lex_comp_list (<);;
```


Evaluating expressions

- Substitution model
- Substitute "free" occurrences of a variable with the value of the formal parameter
- Environment model
- Pass environment as an extra argument

Environment

- Record what value is associated with a given variable
- It is a function var -> value
- Central to the semantics and implementation of a language
- Its maintenance depends on the language
- Lexical vs. dynamic scoping
- Notation:
$\rho\left\{x_{1}\right.$-> v_{1}, x_{2}-> v_{2}, \ldots, x_{n}-> $\left.v_{n}\right\}$
$x_{i}=x_{j} \Leftrightarrow i=j$

Environment

- Example

$$
\begin{aligned}
& \text { let } \rho \text { be }\{x->3, z->\text { "hi", w }->\text { []\} } \\
& \rho(x)=3 \\
& \rho(z)=" h i " \\
& \rho(k)=\text { undefined / error }
\end{aligned}
$$

- Environment update

```
\(\rho[\mathrm{x}->10]=\{\mathrm{x}->10, \mathrm{z}->\) "hi", w \(->\) []\}
\(\rho[k->\) true] \(=\{x->10, z->" h i ", w->[], k->\) true \(\}\)
\(\rho[k->\) true] (k) \(=\) true
```


Building the environment

```
        \rho
let x = e
        \rho[x->ve] (ve is the value e evaluates to in p)
        \rho
let x = e1
        \rho[x->v (e1]
    in e2 (evaluate e2 in \rho[x->v e1])
    p
```


Example

$$
\begin{aligned}
& \text { let } x=5 \\
& \text { let } y=x+6 \\
& \text { let } x=x+y \\
& \text { let } x=3 \\
& \text { in } x+y
\end{aligned}
$$

Functions are values, too

- What do we store in the environment for a function variable?
- A "closure": triple <x, e, p>
- Function application $f\left(e^{\prime}\right)$ in environment ρ^{\prime}
- Evaluate f in ρ^{\prime} to a closure $\langle x, \mathrm{e}, \rho>$
- Evaluate e^{\prime} in ρ^{\prime} to a value v
- Evaluate e in $\rho[x->v]$

Example

```
let x = 5
let f Y = x + Y
let x = 8
f x
```

