
CS 421 Lecture 18: More examples of higher-
order functions

� Lecture outline

� Combinator programming

� Representing sets as higher-order functions

� Representing pairs as higher-order functions

� Building comparators using higher-order functions

� Environment/closure model� Environment/closure model

7/14/2009 1

Review: combinator-style programming

� Can write complex programs by defining a library of
higher-order functions and applying them to one another
(and to first-order or built-in functions).

� Advantage: ease of creating programs – programs are
just expressions

� Example: build a parser by writing “parser combinators.”

7/14/2009 2

Review: parser combinators

� Define a parser to be a function from token list -> (token
list) option.

� Idea is to define functions that build parsers, rather than building
parsers “by hand.”

� Parser to recognize a single token:

let token s = fun cl -> if cl=[] then None

else if s=hd cl then Some (tl cl)

else None;;

let parsex = token ‘x’;;

7/14/2009 3

Review: parser combinators

� “Combinators” to combine parsers into larger parsers:

let (++) p q = fun cl -> match p cl with None -> None

| Some cl' -> q cl';;

let (||) p q = fun cl -> match p cl with None -> q cllet (||) p q = fun cl -> match p cl with None -> q cl

| Some cl' -> Some cl';;

let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

7/14/2009 4

Representing sets as higher-order functions

� Def. A set is a function from values to bool.
type intset = int -> bool

� E.g.:
{2} = fun x -> (x=2)

{2,3} = fun x -> (x=2) or (x=3)

� Set operations:� Set operations:
(* member: int -> intset -> bool *)

let member n s =

(* emptyset: intset *)

let emptyset =

7/14/2009 5

Representing sets as higher-order functions

(* add: int -> intset -> intset *)

let add n s =

(* union: intset -> intset -> intset *)

let union s1 s2 =

(* intersection: intset -> intset -> intset *)(* intersection: intset -> intset -> intset *)

let intersection s1 s2 =

(* remove: int -> intset -> intset *)

let remove n s =

7/14/2009 6

Representing sets as higher-order functions

(* complement: intset -> intset *)

let complement s =

(* intsAbove: int -> intset *)

let intsAbove n =let intsAbove n =

� Note: cannot list elements

7/14/2009 7

Representing pairs as higher-order functions

� Def. A pair is a value p with a constructor pair: α -> β ->
pair, and functions fst: pair -> α and snd: pair -> β such
that fst(pair a b) = a and snd(pair a b) = b.

� Pair operations:
let pair a b =

let fst p =

let snd p =

7/14/2009 8

Building comparators using higher-order
functions

� Def. A comparator is a function of type α * α -> bool.

� E.g., (>) and (=) are comparators

� Can build specific comparators, e.g.:
fun lexorder2 (x,y) (x’,y’) = x<x’ or (x=x’ & y<y’);;

lexorder2 (‘a’,’b’) (‘a’,’c’)

lexorder2 (‘a’,’z’) (‘b’,’a’)

lexorder2 (‘b’,’b’) (‘a’,’c’)

7/14/2009 9

Building comparators using higher-order
functions

� But it’s more fun to build them using higher-order
functions:

let or_comp comp1 comp2 = fun (x, y) ->

(comp1 (x, y)) or (comp2 (x, y))

let lte = or_comp (<) (=)

let and_comp comp1 comp2 = fun (x, y) ->

(comp1 (x, y)) & (comp2 (x, y))

7/14/2009 10

Building comparators using higher-order
functions

let lex_comp comp1 comp2 =

fun (x,y) (x’,y’) -> comp1 (x, x’)

or (x=x’ & comp2 (y, y’))

let lexorder2 = lex_comp (<) (<);;

7/14/2009 11

Building comparators using higher-order
functions

let lex_comp_list comp =

let rec aux lis1 lis2 = match (lis1, lis2) with

([], _) -> true

| (_, []) -> false

| ((x::x’), (y::y’)) -> comp x y

or (x=y & aux x’ y’)

in aux;;in aux;;

let alphalex = lex_comp_list (<);;

7/14/2009 12

Evaluating expressions

� Substitution model

� Substitute “free” occurrences of a variable with the value of the
formal parameter

� Environment model

� Pass environment as an extra argument

7/14/2009 13

Environment

� Record what value is associated with a given variable

� It is a function var -> value

� Central to the semantics and implementation of a
language

� Its maintenance depends on the language

� Lexical vs. dynamic scoping

� Notation:
ρ {x1 -> v1, x2 -> v2, … , xn -> vn}

xi = xj � i = j

7/14/2009 14

Environment

� Example
let ρ be {x -> 3, z -> “hi”, w -> []}

ρ(x) = 3

ρ(z) = “hi”

ρ(k) = undefined / error

� Environment update� Environment update
ρ[x -> 10] = {x -> 10, z -> “hi”, w -> []}

ρ[k -> true] = {x -> 10, z -> “hi”, w -> [], k -> true}

ρ[k -> true](k) = true

7/14/2009 15

Building the environment

ρ

let x = e

ρ[x->ve] (ve is the value e evaluates to in ρ)

ρρ

let x = e1

ρ[x->ve1]

in e2 (evaluate e2 in ρ[x->ve1])

ρ

7/14/2009 16

Example

let x = 5

let y = x + 6

let x = x + ylet x = x + y

let x = 3

in x+y

7/14/2009 17

Functions are values, too

� What do we store in the environment for a function
variable?

� A “closure”: triple <x, e, ρ>

� Function application f(e’) in environment ρ’

� Evaluate f in ρ’ to a closure <x, e, ρ>

� Evaluate e’ in ρ’ to a value v

� Evaluate e in ρ[x->v]

7/14/2009 18

Example

let x = 5

let f y = x + y

let x = 8let x = 8

f x

7/14/2009 19

