CS 421 Lecture 17: More Functional Programming

- Announcements
- Lecture outline
- Using fold_right and fold_left
- Expression evaluation
- Substitution model
- Scope of definitions
- "Simple" examples
- Combinator programming

Announcements

- 4-unit grad students:
- Project proposal due today

Review: fold_right

```
fold_right f [x [ ; x ; ... (xn}] 
        =f x (f (f x (...(f x X Z)...))
fold_right : (\alpha->\beta->\beta)->(\alpha list)->\beta->\beta
```

- Use fold_right to remove all negative elements from a list:
\qquad
fold_right lis

Review: fold_left

```
fold_left f z [x [ ; x % ;... xn ]
        =f(... (f (f z x (f) x (f)...) x x 
fold_left : ( }\alpha->\beta->\alpha)->\alpha->(\beta list)-> 
```

- Use fold_left to compute the length of lis
\qquad
fold_leftlis
- Use fold_left to compute map f lis
fold_left___ lis

Review: defining higher-order functions

```
let rec fold_right f lis z =
    if lis = [] then z
    else f (hd lis)
        (fold_right f (tl lis) z)
```

- Define fold_left:
let rec fold_left f z lis =

Evaluation of expressions

- Problem: "free" variables in function definitions
- Two models: substitution and environment/closure
- Substitution:
- Replace free variable with its value
- Closure:
- Put free variables in an "environment" data structure
- (expr, env) = closure

Evaluation of expressions

- Using substitution model - in function calls, substitute actual parameter for formal parameter in body of function.
- No expressions with free variables evaluated
- Expressions: constants, function definitions (fun x->e), application of built-in functions, if, application of user-defined functions
- let expressions syntactic sugar for function application; top-level definitions implicitly in let
- Tomorrow: handling recursive functions

Evaluation of expressions

- Evaluate expression without free variables:
- Constant n (int, bool, string, list, ..) $\Rightarrow \mathrm{n}$
- Abstraction fun $x->e \Rightarrow$
- Application of built-in operator: e1 +e2 \Rightarrow
- if e1 then e2 else e3 \Rightarrow

Evaluation of expressions

- Application of user-defined function: e1 e2 \Rightarrow
(1) $\mathrm{e} 1 \Rightarrow$ fun $x->e^{\prime}$
(2) e2 $\Rightarrow \mathrm{v}$
(3) let $e^{\prime \prime}=$ substitute v for
(4) eval e''

Example of evaluation

$$
\text { (fun } x \text {-> fun y }->x+y \text {) } 12
$$

Example of evaluation

```
(fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)
```


Free variables

- In rule for applications, substitute v for free occurrences of x in e^{\prime}. Need to define "free occurrence."
- Def. Free occurrences of x in e are those marked with an overbar after applying free to x and e:

```
free x e = match e with
    n ->
    | x ->
    | y ->
    | e1+e2 ->
    | (fun x -> e') ->
    | (fun y -> e') ->
```


Example of free occurrences

```
(fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)
```


Scope rules

- Programs introduce names via "declarations", then refer to those names in "uses." A given name can be introduced in more than one declaration, but every use corresponds to a particular declaration. The question is: which one?
- The scope of a declaration of a name x is the parts of the program in which a use of x refers to this declaration
- A use of a name is in the scope of a declaration if that use is in the scope of that declaration
- N.B. the scope of a declaration can have holes, where the declaration is covered up by another declaration of the same name.

Example: Scope rules in Java

```
class C {
        int Y
        void f (x) { ... x ... f ... Y ... g ... }
        void g () { ... }
}
class D extends C {
    int z
    void f (x) { ... x ... f ... Y ... g ... }
}
```

- Static vs. dynamic scope

Example: Scope rules in OCaml

```
- let \(\mathrm{x}=2\)
    in let \(f=f u n x->x+x\)
        in \(f x\)
- let \(\mathrm{x}=2\)
    in let \(y=x\)
        in let \(f z=\) let \(x=3\) in \(y+z\)
            in \(f x\)
- let \(\mathrm{x}=2\)
    in let add \(=\) fun \(x->\) fun \(y->x+y\)
        in let \(a d d x=\) add \(x\)
        in let \(x=3\) in addx 1
```

- Only static scope

Scope rules in OCaml

- Scope rules are implied by expression evaluation rules.
- Declarations are just function definitions fun x->e
- Scope of this declaration of x is exactly the free occurrences of x in e.
- (Put differently, a use of a variable x is in the scope of the closest enclosing function definition for which x is the formal parameter.)
- This is called static scope, or lexical scope, because the declaration corresponding to any use is known statically (before run time).

The scope rule of LISP

- In Lisp, the declaration associated with a use of a variable x is determined as follows: at run-time, the most recent function application that has x as formal parameter (and which is still on the stack) gives the declaration of x.
- LISP vs. OCaml:

```
let h f = let x = 3 in f x
let f x = let g y = x + y in h g
f 5 => ?
```


"Simple" examples - currying

- Can define a two-argument function in two ways:
- Uncurried:

```
let f x y = ... x ... Y ...
let f = fun x y -> ... x ... y ...
let f = fun x -> fun y -> ... x ... y ...
```

- Curried:

```
let f (x,y) = ... x ... Y ...
let f = fun (x,y) -> ... x ... Y ...
let f = fun p -> ... (fst p) ... (snd p)
```

- Sometimes want to use the "same" function both ways.

"Simple" examples - currying

- Can use higher-order function to turn curried function to uncurried form, and vice versa:

```
let curry f = fun x -> fun y -> f(x,y)
curry : ( }\alpha->\beta->\gamma)-> (\alpha*\beta->\gamma
let uncurry g = fun (x,y) -> g x y
uncurry : (\alpha* \beta->\gamma)-> (\alpha->\beta->\gamma)
f \equivuncurry (curry f)
```


"Simple" examples - reversing arguments

- Given f : $\alpha->\beta->\gamma$, produce f_{R} : $\beta->\alpha->\gamma$, s.t.:

$$
f_{R} x y=f y x
$$

let reverse $\mathrm{f}=$

```
reverse (-) 3 4 = ?
```


"Simple" examples - applying function twice

- Given f : $\alpha->\alpha->\alpha$, produce ff: $\alpha->\alpha->\alpha$, s.t.: $\mathrm{ff} x=f(f x)$
let double f =
(double incr) $5=$?

Combinator-style programming

- Can write complex programs by defining a library of higher-order functions and applying them to one another (and to first-order or built-in functions).
- Advantage: ease of creating programs - programs are just expressions
- Example: build a parser by writing "parser combinators."

Parser combinators

- Define a parser to be a function from token list -> (token list) option.
- Idea is to define functions that build parsers, rather than building parsers "by hand."
- E.g., Parser to recognize a single token:

```
let token s = fun cl -> if cl=[] then None
    else if s=hd cl then Some (tl cl)
    else None;;
let parsex = token 'x';;
parsex ['x'];;
parsex ['a'];;
```


Parser combinators

- "Combinators" to combine parsers into larger parsers:

```
let (++) p q = fun cl -> match p cl with None -> None
                            | Some cl' -> q cl';;
let parsexy = token 'x' ++ token 'Y'
parsexy ['x', 'y']
parsexy ['x', 'z']
let (||) p q = fun cl -> match p cl with None -> q cl
    | Some cl' -> Some cl';;
let parsexyorz = parsexy || token 'z'
parsexyorz ['x', 'y']
parsexyorz ['z']
```


Parser combinators

- Put this together to define parser for grammar:
- $A->a B \mid b$
- $B->c B \mid A$

```
let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl
    and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;
```

parseA ['a';'c';'c';'a';'b']

