
CS 421 Lecture 17: More Functional
Programming

� Announcements

� Lecture outline

� Using fold_right and fold_left

� Expression evaluation

� Substitution model

� Scope of definitions

� “Simple” examples

� Combinator programming

7/13/2009 1

Announcements

� 4-unit grad students:

� Project proposal due today

7/13/2009 2

Review: fold_right

fold_right f [x1;x2;...xn] z

= f x1 (f x2 (...(f xn z)...))

fold_right : (α->β->β)->(α list)->β->β

� Use fold_right to remove all negative elements from a
list:list:
fold_right ___________________ lis ____

7/13/2009 3

Review: fold_left

fold_left f z [x1;x2;...xn]

= f(... (f (f z x1) x2)...) xn

fold_left : (α->β->α)->α->(β list)-> α

� Use fold_left to compute the length of lis
fold_left ___________________ ____ lisfold_left ___________________ ____ lis

� Use fold_left to compute map f lis
fold_left ___________________ ____ lis

7/13/2009 4

Review: defining higher-order functions

let rec fold_right f lis z =

if lis = [] then z

else f (hd lis)

(fold_right f (tl lis) z)

� Define fold_left:� Define fold_left:
let rec fold_left f z lis =

7/13/2009 5

Evaluation of expressions

� Problem: “free” variables in function definitions

� Two models: substitution and environment/closure

� Substitution:

� Replace free variable with its value

� Closure:� Closure:

� Put free variables in an “environment” data structure

� (expr, env) = closure

7/13/2009 6

Evaluation of expressions

� Using substitution model – in function calls, substitute
actual parameter for formal parameter in body of
function.

� No expressions with free variables evaluated

� Expressions: constants, function definitions (fun x -> e),
application of built-in functions, if, application of user-defined application of built-in functions, if, application of user-defined
functions

� let expressions syntactic sugar for function application; top-level
definitions implicitly in let

� Tomorrow: handling recursive functions

7/13/2009 7

Evaluation of expressions

� Evaluate expression without free variables:

� Constant n (int, bool, string, list, ..) ⇒ n

� Abstraction fun x -> e ⇒

� Application of built-in operator: e1 + e2 ⇒⇒

� if e1 then e2 else e3 ⇒

7/13/2009 8

Evaluation of expressions

� Application of user-defined function: e1 e2 ⇒

(1) e1 ⇒ fun x -> e’

(2) e2 ⇒ v

(3) let e’’ = substitute v for

free occurrence of x in e’

(4) eval e’’

7/13/2009 9

Example of evaluation

(fun x -> fun y -> x+y) 1 2

7/13/2009 10

Example of evaluation

(fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)

7/13/2009 11

Free variables

� In rule for applications, substitute v for free occurrences
of x in e’. Need to define “free occurrence.”

� Def. Free occurrences of x in e are those marked with an
overbar after applying free to x and e:
free x e = match e with

n ->n ->

| x ->

| y ->

| e1+e2 ->

| (fun x -> e’) ->

| (fun y -> e’) ->

7/13/2009 12

Example of free occurrences

(fun x -> fun y -> x y) (fun y -> y 4) (fun z -> z+1)

7/13/2009 13

Scope rules

� Programs introduce names via “declarations”, then refer
to those names in “uses.” A given name can be
introduced in more than one declaration, but every use
corresponds to a particular declaration. The question is:
which one?

� The scope of a declaration of a name x is the parts of the � The scope of a declaration of a name x is the parts of the
program in which a use of x refers to this declaration

� A use of a name is in the scope of a declaration if that
use is in the scope of that declaration

� N.B. the scope of a declaration can have holes, where
the declaration is covered up by another declaration of
the same name.

7/13/2009 14

Example: Scope rules in Java

class C {

int y

void f (x) { … x … f … y … g … }

void g () { … }

}

class D extends C {class D extends C {

int z

void f (x) { … x … f … y … g … }

}

� Static vs. dynamic scope

7/13/2009 15

Example: Scope rules in OCaml

� let x = 2

in let f = fun x -> x+x

in f x

� let x = 2

in let y = x

in let f z = let x=3 in y+zin let f z = let x=3 in y+z

in f x

� let x = 2

in let add = fun x -> fun y -> x+y

in let addx = add x

in let x = 3 in addx 1

� Only static scope

7/13/2009 16

Scope rules in OCaml

� Scope rules are implied by expression evaluation rules.

� Declarations are just function definitions fun x ->e

� Scope of this declaration of x is exactly the free
occurrences of x in e.

� (Put differently, a use of a variable x is in the scope of the
closest enclosing function definition for which x is the formal closest enclosing function definition for which x is the formal
parameter.)

� This is called static scope, or lexical scope,
because the declaration corresponding to any use
is known statically (before run time).

7/13/2009 17

The scope rule of LISP

� In Lisp, the declaration associated with a use of a
variable x is determined as follows: at run-time, the most
recent function application that has x as formal
parameter (and which is still on the stack) gives the
declaration of x.

� LISP vs. OCaml:� LISP vs. OCaml:
let h f = let x = 3 in f x

let f x = let g y = x + y in h g

f 5 => ?

7/13/2009 18

“Simple” examples – currying

� Can define a two-argument function in two ways:

� Uncurried:
let f x y = … x … y …

let f = fun x y -> … x … y …

let f = fun x -> fun y -> … x … y …

� Curried:� Curried:
let f (x,y) = … x … y …

let f = fun (x,y) -> … x … y …

let f = fun p -> … (fst p) … (snd p)

� Sometimes want to use the “same” function both ways.

7/13/2009 19

“Simple” examples – currying

� Can use higher-order function to turn curried function to
uncurried form, and vice versa:

let curry f = fun x -> fun y -> f(x,y)

curry : (α->β->γ)->(α*β->γ)

let uncurry g = fun (x,y) -> g x y

uncurry : (α*β->γ)->(α->β->γ)

f ≡ uncurry (curry f)

7/13/2009 20

“Simple” examples – reversing arguments

� Given f: α->β->γ, produce fR: β->α->γ, s.t.:
fR x y = f y x

let reverse f =

reverse (-) 3 4 = ?

7/13/2009 21

“Simple” examples – applying function twice

� Given f: α->α->α, produce ff: α->α->α, s.t.:
ff x = f (f x)

let double f =

(double incr) 5 = ?

7/13/2009 22

Combinator-style programming

� Can write complex programs by defining a library of
higher-order functions and applying them to one another
(and to first-order or built-in functions).

� Advantage: ease of creating programs – programs are
just expressions

� Example: build a parser by writing “parser combinators.”

7/13/2009 23

Parser combinators

� Define a parser to be a function from token list -> (token
list) option.

� Idea is to define functions that build parsers, rather than
building parsers “by hand.”

� E.g., Parser to recognize a single token:

let token s = fun cl -> if cl=[] then None

else if s=hd cl then Some (tl cl)

else None;;

let parsex = token ‘x’;;

parsex [‘x’];;

parsex [‘a’];;

7/13/2009 24

Parser combinators

� “Combinators” to combine parsers into larger parsers:

let (++) p q = fun cl -> match p cl with None -> None

| Some cl' -> q cl';;

let parsexy = token ‘x’ ++ token ‘y’

parsexy [‘x’, ‘y’]

parsexy [‘x’, ‘z’]parsexy [‘x’, ‘z’]

let (||) p q = fun cl -> match p cl with None -> q cl

| Some cl' -> Some cl';;

let parsexyorz = parsexy || token ‘z’

parsexyorz [‘x’, ‘y’]

parsexyorz [‘z’]

7/13/2009 25

Parser combinators

� Put this together to define parser for grammar:

� A -> aB | b

� B -> cB | A

let rec parseA cl = ((token 'a' ++ parseB) || token 'b') cl

and parseB cl = ((token 'c' ++ parseB) || parseA) cl;;

parseA ['a';'c';'c';'a';'b']

7/13/2009 26

