
CS 421 Lecture 16: Functional Programming

� Midterm post-mortem

� Lecture outline

� Functional programming

� Higher-order functions

7/9/2009 1



Midterm post-mortem

� No grades yet

� Probably Monday or Tuesday

� Each problem has been solved correctly

� By at least two students from random sample of 5-6 exams

� Very few people finished all of the problems

� Time was a factor

� Not many common mistakes

7/9/2009 2



Midterm post-mortem

� Binary tree traversal

� “In an in-order traversal, the left child is considered first, then 
the node itself, then the right child.”

let rec iot t = match t with

Empty -> []Empty -> []

| Node(n, l, r) -> (iot l) @ [n] @ (iot r)

7/9/2009 3



Midterm post-mortem

� Consider the following grammar:
A -> int | ’(’ B ’)’

B -> A C

C -> ’+’ A C | ""

7/9/2009 4



Midterm post-mortem

� Extra credit problem:

� Functional programming in SCHEME

(define (append_lists lst1 lst2)

(cond (equal lst1 nil)

lst2lst2

(cons (car lst1)

(append_lists (cdr lst1) lst2))))

7/9/2009 5



Midterm post-mortem

� Questions?

7/9/2009 6



History of functional languages

� LISP, APL (1960)

� ML (1976) – Milner, “A theory of type polymorphism in 
programming”

� SASL (1976) – lazy evaluation

� SCHEME (1975) – Guy Steele – dialect of LISP with � SCHEME (1975) – Guy Steele – dialect of LISP with 
higher-order functions

� Standard ML, CAML (1980’s)

� Erlang (1987) – Ericsson

� Haskell (1990) – lazy evaluation

� Python, …

7/9/2009 7



Functional languages

� Definition:

� Expressions (rather than statements)

� Absence of side effects

� “Large values”

� Essential:

� Dynamic memory allocation� Dynamic memory allocation

� Recursion

� Optional

� Static type checking with polymorphic types (ML, Haskell)

� Higher-order functions, a.k.a. “functions as values” (Scheme, 
ML, Haskell, …)

� Lazy evaluation (Haskell)

7/9/2009 8



Higher-order functions

� Functions are a type of value (“first-class functions”)

� Define anonymously

� Pass as arguments

� Bind to names

� Assign to variables

� Return from functions� Return from functions

7/9/2009 9



Example

� Composition (math function)
(g ◦ f)(x) = g(f(x))

7/9/2009 10



Anonymous functions in Ocaml

� Notation:
� “fun x -> e” – Ocaml expression whose value is a function

� “let f = fun x -> e” is equivalent to “let f x = e”

� Examples:
(fun x -> x + x) 4;;

let f x y = x + y

let f (x,y) = x + y

7/9/2009 11



Passing functions as arguments: map

� Higher-order functions in List module:
map : (α->β) -> α list -> β list

map f [x1;x2;…;xn] = [f x1;f x2;…;f xn]

E.g.,
let lis = [1;2;3;4]let lis = [1;2;3;4]

let incr x = x + 1 (let incr = fun x -> x + 1)

map incr lis

=> [2;3;4;5]

or equivalently:
map (fun x -> x + 1) lis

“Correspondence principle” – doesn’t matter if value is named or 
not 

7/9/2009 12



Passing functions as arguments: fold_right

fold_right : (α->β->β) -> (α list) -> β -> β

fold_right f [x1;x2;…;xn] z = f x1 (f x2 (… (f xn z)…))

fold_right (fun x y -> x + y) lis 0fold_right (fun x y -> x + y) lis 0

[1;2;3;4] => 10

Note: can use “(+)” for function argument:
(+) x y ≡ x + y

7/9/2009 13



Fold_right

fold_right (fun x -> fun y -> x :: y) lis []

=> lis

fold_right (fun x -> fun y -> x :: y) lis lis

=> lis @ lis

fold_right (fun x -> fun y -> (x + (hd y))::y) lis [0]fold_right (fun x -> fun y -> (x + (hd y))::y) lis [0]

[1;2;3;4] => [10;9;7;4;0]

fold_right (fun x -> fun (y::ys) -> (x + y)::ys) lis 

[0]

=> ??

7/9/2009 14



Map as fold_right

� Map is a special case of fold_right:

map f lis = fold_right 

(fun x -> fun y -> f x::y) lis []

7/9/2009 15



Example

� Define f, z such that fold_right f lis z = the pair of 
lists (l1,l2) where l1 contains the elements of lis that 
are < 0 and l2 contains the rest

f = fun x ->

fun (l1, l2) ->

if x < 0

then (x::l1, l2)

else (l1, x::l2)

z = ([],[])

7/9/2009 16



Fold_left

fold_left (α->β->α) -> α -> β list -> α

fold_left f [x1;x2;…;xn] z = f(…(f (f z x1) x2)…) xn

fold_left (+) lis 0 => sum of lisfold_left (+) lis 0 => sum of lis

7/9/2009 17



Example

� Define mapplusone [x1;x2;…;xn] = [x1+1;x2+1;…;xn+1] 

let rec mapplusone lis =

if lis = [] then []

else (hd lis)+1 :: mapplusone (tl lis)

let rec map f lis =

if lis = [] then []

else f (hd lis) :: map f (tl lis)

7/9/2009 18



Defining higher-order functions

let rec map f lis =

if lis = [] then []

else f (hd lis) :: map f (tl lis)

let rec fold_right f lis z =

if lis = [] then z

else f (hd lis) (fold_right f (tl lis) z)else f (hd lis) (fold_right f (tl lis) z)

7/9/2009 19



Defining higher-order functions

map : (α->β) -> α list -> β list

let mapincr = map incr;;

mapincr : int list -> int list

7/9/2009 20



Understanding higher-order functions

� Two approaches: substitution, or environment/closure 
model

� Consider: let addone = map (fun x -> x+1)

� Returns: fun lis -> if lis = [] then []� Returns: fun lis -> if lis = [] then []

else f (hd lis)::map f (tl lis)

� But this has “f” as a free variable.

� Question: when addone is applied, where does the value 

of f come from?

7/9/2009 21



Substitution model

� Replace free variable with its value

map (fun x -> x+1) =

fun lis -> if lis = [] then []

else (fun x -> x+1)(hd lis)

:: map (fun x -> x+1) (tl lis)

� Note: no free variables anymore

7/9/2009 22



Environment/closure model

� Put free variables in a data structure called an 
environment:
{f → fun x -> x + 1}

� Keep expression and environment together in a pair:
(fun lis -> if lis = [] then [](fun lis -> if lis = [] then []

else f (hd lis)::map f (tl lis),

{f → fun x -> x + 1})

� This pair is called a closure.
� After applying map to function, the value is always kept in the 
form of the closure, never just the expression.

7/9/2009 23



Next lecture

� More map & folding examples

� Expression evaluation

7/9/2009 24


