
CS 421 Lecture 13: Run-time systems and 
garbage collection

� Lecture outline

� Execution of dynamic languages

� Sun HotSpot run-time system for Java

� Tags, JIT compilation, reflection

� Memory management

� Memory layout; definition of “garbage”� Memory layout; definition of “garbage”

� Reference-counting

� Garbage collection

� Non-compacting (mark-and-sweep)

� Compacting

6/29/2009 1



Dynamic languages

� Automatic memory management

� Tagged values

� For GC, run-time type-checking, reflection

� Sometimes:

� Dynamic type-checking

� Reflection

� Usually:

� Execute virtual machine code

� Will use Sun HotSpot Java virtual machine as example

6/29/2009 2



Java HotSpot run-time system

� Developed around 1999 – replaced existing widely-used 
Java VM

� Described in several places, e.g.: 
http://java.sun.com/products/hotspot/whitepaper.html

� HotSpot is VM used in java program, and embedded in 
many browsersmany browsers

(Note re: above document – word “compiler” used to refer 
to translator from Java bytecode to native machine code, 
not translator from source code.)

6/29/2009 3



Java HotSpot run-time system

� Garbage collection

� Two-word object headers

� Executes .class files (Java VM code)

� “Just-in-time” compilation

� Meta-objects represented as objects� Meta-objects represented as objects

6/29/2009 4



Meta-objects represented as objects

� Class and Method are classes

� Each class corresponds to a Class object

� Methods of class Class include getDeclaredMethods(), 
getFields(), …

� Each method corresponds to a Method object

� Methods of class Method include getParameterTypes, � Methods of class Method include getParameterTypes, 
getReturnType, …

� Can invoke methods that are detected dynamically –
e.g., search all objects reachable from one object – and 
invoke method print on any object whose class contains 
a print method.

6/29/2009 5



Two-word headers

� Every object in heap is preceded by two words

� First word is pointer to Class object of this method’s class (which 
gives layout of object)

� Second word contains GC info

� Arrays contain third word giving length

6/29/2009 6



Just-in-time compilation

� Methods obtained in bytecode form (.class files) 
translated to native machine code on the fly

� Numerous optimizations employed

� Very important optimization: inlining

� Level of optimization determined by monitoring execution

� Heavily used methods are optimized, and possibly reoptimized 
more aggressively

� Because this is the most innovative aspect of HotSpot, it 
is the main topic of many HotSpot papers.

6/29/2009 7



Automatic memory management

� Memory in heap consists of objects containing pointers to 
other objects.

� Objects in heap are accessed in program by using 
pointers stored in local variables, which are on stack.

� Therefore, only heap objects that matter are reachable
either directly from stack, or from fields of other either directly from stack, or from fields of other 
reachable heap objects

� Objects that are not reachable are called garbage.

� Automatic memory management attempts to 
make garbage cells available for allocation.

6/29/2009 8



Creation of garbage

� Example:

let f n y = let x = numbers 1 n (* list [1;2;…;n] *)

in x@y

� Creates n “cons cells” of garbage, because x@y makes a � Creates n “cons cells” of garbage, because x@y makes a 
copy of x.

6/29/2009 9



Representing free memory

� Alternatives: free list or free area
� Free list: Free memory is placed on a linked list. Request for 

memory iterates over list looking for big enough memory area.

� Free area: Unused area of memory reserved for allocation. 
Memory allocated from bottom of this area.

� Will discuss free list representation first� Will discuss free list representation first

6/29/2009 10



History of heap object, using “free list” system

� Heap contains:
� Data that have been 

allocated

� Data on free list

in use

free

6/29/2009 11

(Pointers from stack, and between 
reachable cells are not shown.)

free list 

pointer



History of heap object, using “free list” system

� Program 
executes:

� x = new C(); or

� x = malloc(); or

� x = a::b

(x a local variable of 
function f)

6/29/2009 12

free list 

pointer



History of heap object, using “free list” system

� Return from f.

� Assume no other 
objects point to 
the new object.

� New object no 
longer reachable

from 

stack

longer reachable

� (but not 
allocatable either)

6/29/2009 13

free list 

pointer

stack



History of heap object, using “free list” system

� Eventually, object is 
returned to free list

6/29/2009 14

free list 

pointer



Three types of memory cells

� Allocatable – i.e., on free list
� Initially contains all cells

� Reachable
� Obtained by request for heap memory

� Still reachable from stack (possibly via other heap objects)

� Neither� Neither
� Once reachable, now not – e.g., was reachable from a local 

variable of function f, but have returned from f

� Was not returned to free list

� “Neither” category is most interesting – memory could be 
made allocatable.

6/29/2009 15



Reference counting

� Use free list

� Track number of pointers to every object

� Adjust count each time a pointer is copied/assigned

“p = q”: Increment refcnt(*q)

Decrement refcnt(*p)Decrement refcnt(*p)

if refcnt(*p)=0 then return *p to free list

and decrement refcnt of all

objects that *p points to

� All objects go to free list as soon as they are non-
reachable – no “neither” category

6/29/2009 16



Reference counting (cont.)

� Advantages

� Cost spread out over computation

� Disadvantages

� Cannot easily handle cycles among objects (which occur a lot)

2 1

6/29/2009 17

2 1

1 1

remove 

pointer



Garbage collection

� Two methods

� Non-copying (mark-and-sweep)

� Uses free list representation

� Copying

� Uses free area representation

� Unlike reference-counting:� Unlike reference-counting:

� Cells go into “neither” category temporarily

� Are recovered all at once

� Costs vary according to method, but happen all at once – “GC 
pause” – and are not amortized

6/29/2009 18



Non-copying garbage collection

� Use free list

� Reserve one bit in each object header, called the 
“reachable” bit

� Start with reachable bit zero in every header

� Traverse reachable data, setting reachable bit� Traverse reachable data, setting reachable bit

� Iterate over entire heap. If reachable bit is 1, reset it; if 
it is zero, place that memory chunk on free list

� Observations
� Reachable data is not moved

� Reachable data remains spread across memory

� Cost is linear in total size of heap

6/29/2009 19



Copying garbage collection

� Use free area

� Half of memory is reserved (!); all allocation happens in 
other half, called half-in-use.

� Half-in-use is divided into used area and free area

� Allocate memory from bottom of free area. When free � Allocate memory from bottom of free area. When free 
area is exhausted, do GC

� GC: Traverse reachable object, moving them to reserved 
area and adjusting all pointers. Reserved area now 
becomes half-in-use. Free area is area on top of moved 
objects.

6/29/2009 20



History of heap object, using “free area” system

� Heap contains:
� Data that have been 

allocated – some 
reachable and some 
not

6/29/2009 21

reserved
free area 

pointer



History of heap object, using “free area” system

� Program 
executes:

� x = new C(); or

� x = malloc(); or

� x = a::b

(x a local variable of 
function f)

6/29/2009 22

reserved
free area 

pointer

from 

stack



History of heap object, using “free area” system

� Return from f.

� Assume no other 
objects point to 
the new object.

� New object no 
longer reachable

free area 

pointer

longer reachable

� (but not 
allocatable either)

6/29/2009 23

reserved

pointer



History of heap object, using “free area” system

� Eventually, GC is 
done

� Moves reachable 
data to reserved 
memory area.

6/29/2009 24

reserved

free area 

pointer

reachable 

objects only



Copying garbage collection (cont.)

� Observations
� Data is moved; all pointers must be adjusted

� Works only if garbage collector knows which values are pointers.

� Reachable data are compressed

� Cost is linear in size of reachable data

� Traversal normally done breadth-first� Traversal normally done breadth-first

6/29/2009 25



Generational garbage collection

� Variant of copying collector

� Most data either long-lived or short-lived

� Both methods described spend a lot of time traversing 
and/or copying long-lived data

� To avoid this, divide memory into four spaces:� To avoid this, divide memory into four spaces:
� Young-in-use

� Young reserved

� Old-in-use

� Old reserved

� Start allocating from young-in-use, proceed as for regular 
copying GC

6/29/2009 26



Generational garbage collection (cont.)

� When a GC does not succeed in recovering memory for 
young space, move data from young space to old-in-use. 
Continue to allocate from young-in-use.

� When old-in-use fills up, copy to old reserve.

� Observations
� Copying of old space a rare event

� GC in young space inexpensive because most young memory is 
garbage

� Can extend idea to more than two “generations”

6/29/2009 27



Java HotSpot run-time system GC

� HotSpot uses two-generation collector

� Young generation uses copying collector

� Old generation uses mark-and-compact method –
compact in place

6/29/2009 28


