
CS 421 Lecture 12: More code generation

� Announcements

� MP5 posted

� Compass issues

� Midterm pre-review

� Lecture outline� Lecture outline

� Compiling in context

� Assignment

� Break statements

� Short-circuit evaluation of boolean expressions

� Switch statements

� Arrays

� Code optimization

6/25/2009 1

Announcements

� MP5 posted

� Parser for MiniJava

� Due 1:00pm Wed, July 1

� Compass issues

� Midterm pre-review

� Next Tuesday: midterm review session

� Past exams and sample questions posted later today

� See the “Exams” section of the web site

� Submit your questions on the class newsgroup

� In the “Midterm review questions” topic

6/25/2009 2

Review: compiler back-end

Generate
intermediate

representation
IR

Machine-
independent
optimization

SymTable

AST

6/25/2009 3

Machine

language

Code
generationIR

Notation

� Old:

� [S] = generated code for S

� [e] = generated code for e

� New:

� Use subscripts on brackets for additional arguments

� [S] is compiled code for S, assuming S occurs within a switch � [S]L is compiled code for S, assuming S occurs within a switch
statement labeled L.

� [e]x is compiled code for e, assigned to variable x

6/25/2009 4

Assignment statements

� Old scheme:
[x=e] = let (I,t) = [e] in I; x = t

� Can give poor resuts:
[x=3] = t = 3; x = t

[x=x+1] = t1 = 1; t2 = x + t1; x = t2

� Compile expressions in context of target location:
[e]x = code to calculate value of e and store it in x

[e]x : instructruction list

6/25/2009 5

Examples

� Expressions within a variable context

[x=e] = [e]x

[n]x = “x = n”

[y]x = “x = y” (if y a different variable from x; ε otherwise)

[e1+e2]x = let t = newloc() in

[e1]t; [e2]x; x = x + t

[x=x+1] =

[x=1+x] =

6/25/2009 6

break statements

� Definition: breaks from one level of switch or while

� Cannot translate “break” without knowing the context

� [S]L = code for statement S, given that S occurs inside a switch
or while statement, and L is the label just after that enclosing
statement.

� More generally:� More generally:

[break]Lb,Lc = JUMP Lb

[continue]Lb,Lc = JUMP Lc

6/25/2009 7

Example: while

� Old method (no break/continue)
[while e do S1] = JUMP L2

L1: [S1]

L2: I

CJUMP t, L1, L3

L3:

� New method (break/continue OK)� New method (break/continue OK)
[while e do S] = JUMP L2

L1: [S]L3,L2

L2: [e]

CJUMP t,L1,L3

L3:

6/25/2009 8

Boolean expressions

� Current method: boolean expressions evaluated like any
other, placing value in a temporary location:

[e1 < e2] = let (I1,t1) = [e1], (I2,t2) = [e2], t = newloc()

in (I1; I2; t = t1 < t2, t)

[e1 && e2] = let (I1,t1) = [e1], (I2,t2) = [e2], t = newloc()

in (I1; I2; t = t1 && t2, t)

[if e then S1 else S2] = let (I,t) = [e], …

in (I; CJUMP t,L1,L2; …)

� What’s wrong with this?

6/25/2009 9

Example

[if (x < y && y < z) then S1 else S2] =

6/25/2009 10

Short-circuit evaluation

� Improved method:
[e1 && e2] = let t = newloc(),

I1 = [e1]t,

I2 = [e2]t,

L1, L2 = newlabel()

in (I1

CJUMP t, L1, L2

L1: I2L1: I2

L2: … , t)

� t contains value of e1 && e2

� e2 is evaluated only if needed

6/25/2009 11

Example

[if (x < y && y < z) then S1 else S2] = let … in

t = x < y

CJUMP t, L1, L3

L1: t = y < z

CJUMP t, L2, L3

L2: [S1]

JUMP L4

L3: [S2]

L4:

� What’s wrong now?

6/25/2009 12

Compiling boolean exprs in context

� Get better code if boolean expression can jump to
correct label as soon as possible

� [e]Lt,Lf = code that calculates e and jumps to Lt if it is
true, Lf if it is false.

� The code does not save the value anywhere

� Examples� Examples

[true]Lt,Lf =

[!e]Lt,Lf =

6/25/2009 13

Compiling boolean exprs in context

[e1 < e2]Lt,Lf =

[e1 && e2]Lt,Lf =

[e1 || e2]Lt,Lf =

6/25/2009 14

Compiling boolean exprs in context

[while e do S] =

[if e then S1 else S2] =

6/25/2009 15

Example

[if (x < y && y < z) then S1 else S2] =

6/25/2009 16

Compiling switch statement

� Use “jump table” and address calculation

[switch (e) { let (I,t) = [e] in

case 0: S0; I

break; δ = t*4

case 1: S1; i = table + δ

break; JUMPIND i

... L0: [S0]... L0: [S0]

}] JUMP L

L1: [S1]

...

L:

table: L0,L1, ...

6/25/2009 17

Compiling object references

� In expression e.t:

� Type of e is known; call its class C

� Location of field t within C is known; say its offset is o

� [e] will produce (I,t), where t contains pointer to object
[e.t] = let (I,t) = [e]

t1 = newloc()

in (I; t1 = t + o, t1)

� t1 is the address of e.x. To get value, add:

t2 = LOADIND t1

� Method calls e.t(…) more complicated – will discuss in
future classes

6/25/2009 18

Compiling array references

� Simple rule: if A has elements of type T, and if elements
of type T occupy n bytes, then address of A[i] is address
of A + i*n.

[A[e]] = let (I,t) = [e]

in (Iin (I

t1 = &A

t2 = t * w (w = size of A’s elements)

t3 = t1 + t2

t4 = LOADIND t3, t4)

6/25/2009 19

Compiling array references

� Idea extends to multi-dimensional arrays

� Traditional 2D arrays (C, FORTRAN)

A0,0 … A0,m-1 A1,0 … A1,m-1 An-1,0 An-1,m-1……

[A[i][j]] = t1 = &A

t2 = i * 4 * m

t3 = t1 + t2

t4 = j * 4

t5 = t3 + t4

t6 = LOADIND t5

6/25/2009 20

Compiling array references

� 2D arrays (Java)

� Use LOADIND t3 for location of array; use 4 instead of 4*m

A0 … AnA1

6/25/2009 21

A0,0

…

A0,m-1

A0,0

…

A0,m-1

A0,0

…

A0,m-1

� Optimizations that can be done a the level of IR

� I.e., does not depend upon features of the target machine such
as registers, pipeline, special instructions

� E.g., “loop-invariant code motion”:

int A[100][100] t1 = &A

t2 = i*100

Machine-independent optimizations

t2 = i*100

while (j < n) { L1: t3 = t2 + j

x = x + A[i][j] t4 = t3 * 4

j++; t5 = t1 + t4

} t6 = LOADIND t5

x = x + t6

j = j + 1

CJUMP …,L1,L2

L2:

6/25/2009 22

Machine-dependent optimizations

� Optimizations that exploit features of the target machine
such as registers, pipeline, special instructions

� Register allocation

� Instruction selection

� Instruction scheduling

6/25/2009 23

