
CS 421 Lecture 11: Code generation

� Lecture outline

� Compiler structure

� Run-time environment

� Execution of static languages

� Code optimization – why?

� Code generation� Code generation

� Code optimization – how?

6/23/2009 1

Compiler structure

� For traditional (static) languages:

Source
Front
end

AST

Back
end

Machine

language

6/23/2009 2

Source end

Symbol

table

end language

Review: front end

Source Lexer Token file

Scanner

Tokenizer

6/23/2009 3

ASTParser Symbol

table

Type
checking

Back end

Generate
intermediate

representation
IR

Machine-
independent
optimization

SymTable

AST

� Intermediate representation (IR) is simpler to operate on
than machine language

6/23/2009 4

Machine

language

Code
generationIR

Run-time environment

� Once we have the program in machine code, how do we
run it?

� Instructions executed directly on HW

� OS calls?

� Variables?

� Function/procedure calls?� Function/procedure calls?

� Memory architecture

� Information about the program

6/23/2009 5

Run-time environment

� Memory layout:

6/23/2009 6

Run-time environment

� Stack structure:

Local variables

Stack before
calling a routine

FP

SP

Stack after calling
a routine

Local variables

6/23/2009 7

Stack grows down

SP

Local variables

Stack grows down

FP

SP

Arguments

Return address

Previous FP

Stack
frame

Run-time environment

� Heap structure:

object, or
cell list, or

Header

…

6/23/2009 8

cell list, or
…

free

…

free

…

…

Code optimization – motivating example

� Just to show effect of code optimization, here’s a C
program:

main () {

int i, j, k;

i = (j+1)*(k-1);

printf(“%d”, I);

}

6/23/2009 9

Code optimization – motivating example

� Machine code produced by C compiler:
leal 4(%esp), %ecx

andl $-16, %esp

pushl -4(%ecx)

pushl %ebp

movl %esp, %ebp

pushl %ecx

subl $36, %espsubl $36, %esp

movl -12(%ebp), %edx

addl $1, %edx

movl -8(%ebp), %eax

subl $1, %eax

imull %edx, %eax

movl %eax, -16(%ebp)

movl -16(%ebp), %eax

movl %eax, 4(%esp)

movl $.LC0, (%esp)

call printf

6/23/2009 10

Code optimization – motivating example

� Machine code produced by C compiler with –O4:
leal 4(%esp), %ecx

andl $-16, %esp

pushl -4(%ecx)

addl $1, %eax

leal -1(%eax), %edx

imull %edx, %eax

Pushl %ebpPushl %ebp

Movl %esp, %ebp

Pushl %ecx

Subl %20, %esp

movl %eax, 4(%esp)

movl $.LC0, (%esp)

call printf

6/23/2009 11

Code optimization

� How can we get there?

� Go directly from AST+ST -> ML

� What is the problem?

� Use intermediate representation

� IR

� Close enough to machine language that IR -> ML translation is � Close enough to machine language that IR -> ML translation is
easy

� Abstracts over some details, platform-specific features, etc.

6/23/2009 12

Translation to IR

� Different types of intermediate representations

� Stack machine

� 3-address instructions

� 2-address instructions

� Various graph structures showing control flow and data
dependenciesdependencies

� Consider translation to 3-address form:

� [S] : Statement -> instruction list

� [e] : Expression -> instruction list * variable

� At this stage, we are not thinking about machine registers. Just
give every value a location name.

� In later stage, decide whether value will to in memory, in
register, or on stack.

6/23/2009 13

Translation to machine language

� Expressions:

� [n] (n is a constant) = let t = newloc()

in (t = n, t)

� [x] (x is a variable) = (ε , x)

� [e1 + e2] = let (I1, t1) = [e1]

(I2, t2) = [e2]

t3 = newloc()

in (I1 , t3)

I2

t3 = t1 + t2

6/23/2009 14

Example 1

� [n] = let t = newloc() in (t = n, t)

� [x] = (ε , x)

� [e1 + e2] = let (I1, t1) = [e1], (I2, t2) = [e2]

t3 = newloc ()

in (I1 , t3)

I2

t3 = t1 + t2

� x + (10 * y)� x + (10 * y)

6/23/2009 15

Example 2

� [(j + 1) * (k – 1)]

6/23/2009 16

Translation to machine language

� Statements

� Assignment

� [x = e] = let (I, t) = [e]

in Iin I

x = t

� Sequence (block)

� [{S1; S2; … ; Sn}] = [S1]

[S2]

...

[S3]

6/23/2009 17

Translation to machine language

� If-then-else

� [if e then S1 else S2] =

let (I, t) = [e]

L1, L2, L3 = newlabels()

in I

CJUMP t, L1, L2CJUMP t, L1, L2

L1: [S1]

JUMP L3

L2: [S2]

L3:

6/23/2009 18

Translation to machine language

� While

� [while e do S1] =

let (I, t) = [e]

L1, L2, L3 = newlabels()

in ??

6/23/2009 19

Translation to machine language

� While

� [while e do S1] =

let (I, t) = [e]

L1, L2, L3 = newlabels()

in JUMP L2

L1: [S1]L1: [S1]

L2: I

CJUMP t, L1, L3

L3:

6/23/2009 20

Translation to machine language

� Procedure call

� [f(e1, … , en)] =

let (Ii, ti) = [ei] for all I

in I1

PUSH t1

I2I2

PUSH t2

...

In

PUSH tn

CALL f

6/23/2009 21

What is left?

� Next class

� Finish up statements

� Switch

� Break

� Finish up expressions

� Arrays� Arrays

� Booleans

� Implementing code optimization

6/23/2009 22

