CS 421 Lecture 11: Code generation

I —

= Lecture outline
= Compiler structure
= Run-time environment
= Execution of static languages
= Code optimization — why?
= Code generation
= Code optimization — how?

6/23/2009 1

Compiler structure

= For traditional (static) languages:

_ >
Front Back [__ s Machine

end end language
N

6/23/2009

Review: front end

Parser

6/23/2009

Lexer

Scanner

Tokenizer

AST

Type
checking

Back end

IR

Generate
intermediate
representation

> Machine-
“ independent
optimization

Code
generation

Machine
language

= [ntermediate representation (IR) is simpler to operate on
than machine language

6/23/2009

Run-time environment
|

= Once we have the program in machine code, how do we
run it?
= Instructions executed directly on HW

= OS calls?
= Variables?
= Function/procedure calls?

= Memory architecture
= Information about the program

6/23/2009

Run-time environment
R,

= Memory layout:

P w7 ™ Ty omog ™
P Lt e e
OxBboOOOOD |~ -0 - S e e

Stack Segment

-

t

Data Segment

Text Segment

P Py S 0 0l PR
e s o Redppved’ - 2
.."'-1-...,.""- P L-..l"r*

hall "‘;"."‘ Pl Y '.‘:"

ox00000000 L.

6/23/2009 6

Run-time environment

R,

= Stack structure:

Stack before Stack after calling

calling a routine i
f ! a routine
FP
Local variables Local variables
SP —»
! ; Arguments
Stack grows down Return address
¢ Previous FP
FP
: Stack
Local variables f
rame
SP —»
Stack grows down

'

6/23/2009 7

Run-time environment

= Heap structure:

6/23/2009

/

Header

object, or
cell list, or -[

free

free

Code optimization — motivating example

= Just to show effect of code optimization, here's a C
program:

main () {

int i, j, k;
i = (J+1)*(k-1);

printf (“%d”, I);
}

6/23/2009 9

Code optimization — motivating example

= Machine code produced by C compiler:

leal 4 (%esp), %ecx
andl $-16, %esp
pushl -4 (%ecx)

pushl sebp

movl sesp, %ebp
pushl secx

subl $36, %esp

movl -12 (%ebp), %edx
addl $1, %edx

movl -8 (%ebp) , %eax

subl $1, %eax
imull $edx, %eax

movl %eax, —16 (%ebp)
movl -16(%ebp), S%Seax
movl seax, 4(zesp)
movl $.LCO, (%esp)
call printf

6/23/2009 10

Code optimization — motivating example

= Machine code produced by C compiler with —04:

leal 4 (%esp), %secx
andl $-16, %esp
pushl -4 (%ecx)

addl $1, %eax

leal -1 (%eax), %edx
imull %$edx, %eax
Pushl sebp

Movl sesp, %Sebp
Pushl secx

Subl %20, %esp
movl seax, 4(zesp)
movl $S.LCO, (%esp)
call printf

6/23/2009 11

Code optimization

R,

= How can we get there?

= Go directly from AST+ST -> ML
= What is the problem?

= Use intermediate representation

= IR

= Close enough to machine language that IR -> ML translation is
easy

= Abstracts over some details, platform-specific features, etc.

6/23/2009 12

Translation to IR

= Different types of intermediate representations
= Stack machine
= 3-address instructions
= 2-address instructions
= Various graph structures showing control flow and data
dependencies
= Consider translation to 3-address form:
= [S]: Statement -> instruction list
= [e]: Expression -> instruction list * variable

= At this stage, we are not thinking about machine registers. Just
give every value a location name.

= In later stage, decide whether value will to in memory, in
register, or on stack.

6/23/2009

13

Translation to machine language

= EXpressions:

[n] (n is a constant) = let t = newloc()
in (t = n, t)
[X] (x 1s a variable) = (g , X)
[el + e2] = let (I, t;) = [el]
(Igr tg) = [ez]
t; = newloc()
in (I, t5)
I,

6/23/2009 14

Example 1

= [n] = let t = newloc() in (t = n, t)
= [x]1=0¢g, x)
= [el +e2] =1let (I, ty) = [el 1, (I,, t,) = [e2]
t; = newloc ()
in (I, , E3)
1,

= X+ (10 *vy)

6/23/2009 15

Example 2

[G+D(k=-1)]

6/23/2009 16

Translation to machine language

= Statements

= Assignment

= [x=e] =let (I, t) =1 e]
in I
X =t

= Sequence (block)

= [{sl; s2; ..; sn}] = [S1]
[52]

[S3]

6/23/2009 17

Translation to machine language
=

= If-then-else

[if e then S1 else S2] =
let (I, t) =1 e]
L1, L2, L3 = newlabels()

in I
CJUMP t, L1, L2
Ll: [S1]
JUMP L3
L2: [S2]
L3:

6/23/2009 .8

Translation to machine language

= While

= [while e do S1] =
let (I, t) =1 e]
L1, L2, L3 = newlabels/()

in

6/23/2009 19

Translation to machine language
=

= While

[while e do S1] =
let (I, t) = [e]
L1, L2, L3 = newlabels/()
in JUMP L2
Ll: [S1]
L2: I
CcJumMP t, L1, L3
L3:

6/23/2009 20

Translation to machine language
=

= Procedure call

let (I, t;) = [e;] for all I

6/23/2009 21

What is left?

= Next class

= Finish up statements
= Switch
= Break
= Finish up expressions
= Arrays
= Booleans
= Implementing code optimization

6/23/2009

22

