
CS 421 Lecture 9: LR parsing and resolving
conflicts

� Review

� Top-down parsing

� Bottom-up parsing

� Lecture outline

� What are conflicts?� What are conflicts?

� Using parse trees to understand conflicts

� Fixing conflicts

� Eliminating conflicts using %prec declarations

6/22/2009 1

Review: Top-down parsing

� A.K.A. recursive descent

� One parse function per non-terminal

� Ambiguity

� LL(1) condition

� Parse tree construction� Parse tree construction

� Precedence

� Associativity

� How do we choose which production to apply?

6/22/2009 2

Review: Bottom-up parsing

� A.K.A. shift-reduce

� Keep a stack of partial parse trees

� Automatic parser generation (ocamlyacc)

� Actions

� Shift

� Reduce� Reduce

� Accept

� Reject

� How to decide which action to take?

� Today: dealing with conflicts

6/22/2009 3

Conflicts

� Big question: how to choose whether to shift or reduce?

� ocamlyacc uses a method – called LALR(1) – to construct tables
that say which action to take

� There are times when there is no good way to make this
decision

� ocamlyacc will reject grammar and give an error message� ocamlyacc will reject grammar and give an error message

� In bottom-up parsing, these are called conflicts
� As with top-down parsing, these problems can sometimes be
resolved by modifying the grammar.

6/22/2009 4

Conflicts

� Ocamlyacc generates tables saying which action to take
at each point in the parse

� Method is called “LALR(1)”

� “LR(1)” is a similar, but somewhat more powerful, method. Will
often use “LR(1)” and “LALR(1)” as synonyms.

� Not every grammar can be parsed using this method� Not every grammar can be parsed using this method

� Problem is always that ocamlyacc cannot decide on the proper
action in some cases

� “Shift/reduce conflict” – cannot decide whether to shift or reduce

� “Reduce/reduce conflict” – know to reduce, but can’t decide
which production to use

6/22/2009 5

Example 1

� Grammar Language??
� A→ B, id

� B→ id | id, B

� Unambiguous, but consider two inputs:

� x,y,10

� x,y,z,10� x,y,z,10

� Both lead to an identical stack/lookahead configuration,
but the correct action in one case is shift and in the other
is reduce.

� Look at the two parse trees, and the s-r derivations.

6/22/2009 6

Example 1: parse trees

� Grammar:
� A→ B, id

� B→ id | id, B

� Parse tree:

x,y,10 x,y,z,10

6/22/2009 7

Example 1: derivations

� Grammar:
� A→ B, id

� B→ id | id, B

� Derivation:

Action Stack Input Action Stack Input

S x,y,10 S x,y,z,10

6/22/2009 8

Example 1: ocamlyacc

� Presented to ocamlyacc:
%token int id comma

%start A

%type <int> A

%%

A: B comma int {0}

B: id {0}

| id comma B {0}| id comma B {0}

� Using “ocamlyacc –v”, file simple.output contains:
3: shift/reduce conflict (shift 6, reduce 2) on comma

state 3

B : id . (2)

B : id . comma B (3)

6/22/2009 9

Example 1b

� One way to fix grammar:
� A→ B int

� B→ id , | id , B

� Conflict resolution:

� If id on stack – shift

� If id + ‘,’ on stack, and lookahead is:� If id + ‘,’ on stack, and lookahead is:

� id – shift

� number – reduce

� comma – reject

6/22/2009 10

Example 1b: parse trees

� Grammar:
� A→ B int

� B→ id , | id , B

� Parse tree:

x,y,10 x,y,z,10

6/22/2009 11

Example 1b: derivations

� Grammar: Rules for (id + ‘,’) lookahead:
� A→ B int id – shift

� B→ id , | id , B number – reduce

comma – reject

� Derivation:

Action Stack Input Action Stack InputAction Stack Input Action Stack Input

S x,y,10 S x,y,z,10

6/22/2009 12

Example 1c

� Another way to fix grammar:
� A→ B , int

� B→ id | B , id

� Conflict resolution:

� Stack + lookahead give enough info to take correct parse action

6/22/2009 13

Example 1c: parse trees

� Grammar:
� A→ B , int

� B→ id | B , id

� Parse tree:

x,y,10 x,y,z,10

6/22/2009 14

Example 1c: derivations

� Grammar:
� A→ B , int

� B→ id | B , id

� Derivation:

Action Stack Input Action Stack Input

S x,y,10 S x,y,z,10

6/22/2009 15

Example 2

� Ambiguous grammar for conditional expressions:
� CondExpr→ id | CondExpr || CondExpr

| CondExpr && CondExpr | ! CondExpr

� Consider this input:
� x || y && z

� Stack/lookahead config in which shifting and reducing � Stack/lookahead config in which shifting and reducing
both work, but produce different parse trees:

6/22/2009 16

Example 2: derivations

� Grammar:
� CondExpr→ id | CondExpr || CondExpr

| CondExpr && CondExpr | ! CondExpr

� Derivation:

Action Stack Input

S x || y && z

R x || y && z

S*2 CE || y && z

R CE || y && z

S*2 or R? CE || CE && z

6/22/2009 17

Example 2: derivations

� Grammar:
� CondExpr→ id | CondExpr || CondExpr

| CondExpr && CondExpr | ! CondExpr

� Derivation:

Action Stack Input Action Stack Input

S*2 CE || CE && z R CE || CE && z

6/22/2009 18

Example 2: ocamlyacc

� ocamlyacc –v output contains
10: shift/reduce conflict (shift 7, reduce 2) on and

10: shift/reduce conflict (shift 8, reduce 2) on or

state 10

CondExpr : CondExpr . or CondExpr (2)

CondExpr : CondExpr or CondExpr . (2)

CondExpr : CondExpr . and CondExpr (3)CondExpr : CondExpr . and CondExpr (3)

and shift 7

or shift 8

$end reduce 2

6/22/2009 19

Example 2 (cont.)

� One way to resolve conflict: fix grammr.

� Use “stratified grammar,” as for arithmetic expressions:
� CondExpr→ CondTerm | CondExpr || CondTerm

� CondTerm→ CondPrimary | CondTerm && CondPrimary

� CondPrimary→ id | ! CondPrimary\

� Parse tree: � Parse tree: x || y && z

6/22/2009 20

Example 2 (cont.)

� Another way to resolve conflict: precedence declarations.

� Suppose t1 is the topmost terminal symbol on the stack,
and t2 is the lookahead symbol. Then:
� If t1, t2 appear in the same %left declaration, then reduce

� If t1, t2 appear in the same %right declaration, then shift

� If t appears in a declaration before t , then reduce� If t1 appears in a declaration before t2, then reduce

� If t1 appears in a declaration aftert2, then shift

� Example:
%left token, …

%right token, …

%nonassoc token, …

6/22/2009 21

Example 2 (cont.)

� Use ambiguous grammar, but add these declarations
%left or

%right and

� x || y && z is now handled correctly. Derivation:

Action Stack Input

S x || y && zS x || y && z

6/22/2009 22

Example 2 (cont.)

� However, ocamlyacc still reports conflicts. Output:
6: shift/reduce conflict (shift 7, reduce 4) on and

6: shift/reduce conflict (shift 8, reduce 4) on or

state 6

CondExpr : CondExpr . or CondExpr (2)

CondExpr : CondExpr . and CondExpr (3)

CondExpr : not CondExpr . (4)

and shift 7

or shift 8

$end reduce 4

� Problem is that we didn’t resolve ambiguity involving !
� Add “%nonassoc not” after the two lines above

6/22/2009 23

More on conflicts and LR parsing

� Prof. Kamin’s note on the “LR theorem”

� Compilers: Principles, Techniques, and Tools by Aho,
Sethi, and Ullman

� A.K.A "The Dragon Book"

6/22/2009 24

