
CS 421 Lecture 9: Bottom-up Parsing

� Announcements

� OCaml self-help hints

� Lecture outline

� Bottom-up parsing

� ocamlyacc

6/18/2009 1

Announcements

� MP4 has been posted

� MiniJava lexer

� Reminder: midterm exam date – Thursday, July 2

6/18/2009 2

OCaml self-help hints

� Consult the CS 421 resource guide:

� http://www.cs.uiuc.edu/class/su09/cs421/

� Use “Tips for using OCaml top level” to speed up working with
the interactive environment

� Consult the OCaml manual when you want a definitive answer
about something

� May be technical, not “user-friendly”

� Ask on the newsgroup

� If you are having a problem, it’s likely somebody has run into it
already, or they will in the future.

� Ask Google

� It probably knows…

6/18/2009 3

OCaml self-help hints

� Be careful about

� Data types, and type inference

� Operator precedence

� Common OCaml error messages:

� syntax error (underlined)

� unbound value use (underlined)

� Pattern matching is not exhaustive. Here is a counterexample:
…

� This expression has type <type1> but is here used with <type2>

� Watch out especially for “unit”

� <whatever error> in <file>.ml at line <line> characters <chars>

6/18/2009 4

Top-down vs. bottom-up parsing

� Why is top-down called “top-down?”

� As we consume tokens, we build a parse tree.

� At any one time, we are filling in the children of a particular non-
terminal.

� As soon as we decide which production to use, we can fill in the
tree.

� In this sense, we are building the tree from the top (root) down
(to the leaves).

� Nature and Computer Science disagree on this point

6/18/2009 5

Top-down parsing

� Example: Input: x + y * z
� E→ id T

� T→ ε | + E | * E

6/18/2009 6

Bottom-up parsing

� Works by creating small parse trees and joining them
together into larger ones.

� Example: Input: x + y * z
� E→ id T

� T→ ε | + E | * E

� Start constructing trees, put them on stack:

� Construct tree x: {x}

� Add tree +: {x, +}

� Add tree y: {x, +, y}

� Add tree *: {x, +, y, *}

� Add tree z: {x, +, y, *, z}

6/18/2009 7

Bottom-up parsing (cont)

� Construct parse tree by merging:

� {x, +, y, *, z}

� Apply T→ ε

� {x, +, y, *, z, T→ ε}

� …

6/18/2009 8

How bottom-up parsing works

� Keep a stack of small parse trees. Based on what’s in
this stack, and the next input token, take one of these
actions:

� Shift: move lookahead token to stack

� Reduce A→ α: if roots of trees on stack match α, replace those
trees on stack by single tree with root A

� Accept: reduce when non-terminal is the start symbol, look-
ahead is EOF

� Reject

� Bottom-up parsing is also called shift-reduce parsing

6/18/2009 9

Shift-reduce example 1

� Example: Input: x ; y ; z
� L→ L ; E | E

� E→ id

Action Stack Input

S x ; y ; z

R E→ id x ; y ; z

…

6/18/2009 10

Shift-reduce example 1

� Example:
� L→ L ; E | E

� E→ id

Action Stack Input

6/18/2009 11

Shift-reduce example 2

� Example: Input: x + 10 * y
� E→ E + T | T

� T → T * P | P

� P→ id | int

Action Stack Input

S x + 10 * y

R P→ id x + 10 * y

…

6/18/2009 12

Shift-reduce example 2

� Example:
� E→ E + T | T

� T → T * P | P

� P→ id | int

Action Stack Input

6/18/2009 13

Bottom-up parsing

� This is hard!

� How can we build a parser that works like this?

� Shift-reduce parsing is not usually done “by hand”

� Automated parser generator tools

� Generate parser code based on grammar specification

� Similar to ocamllex and regular expressions for lexing

� Ocaml’s parser generator is called ocamlyacc

� “yet another compiler-compiler”

6/18/2009 14

Using ocamlyacc

� Create grammar specification in a text file

� <grammar>.mly

� Execute

� ocamlyacc <grammar>.mly

� Produces

� code for parser in <grammar>.ml

� interface (including type declaration for tokens) in
<grammar.mli>

6/18/2009 15

Parser code

� <grammar>.ml defines one parsing function per entry
point

� Parsing function takes a lexing function (lexbuf -> token)
and a lexbuf as arguments

� Aside: we’ll see more functions being passed around as
arguments soon…

� Returns semantic attribute of corresponding entry point

6/18/2009 16

Example – expression grammar

� We will take a simple expression grammar and create a
parser to parse inputs and produce abstract syntax

� Grammar:
� M→ Exp eof

� Exp → Term | Term + Exp | Term - Exp

� Term→ Factor | Factor * Term | Factor / Term

� Factor→ id | (Exp)

� Abstract syntax
(* file: expr.ml *)

type expr =

Plus of expr * expr

| Minus of expr * expr

| Mult of expr * expr

| Div of expr * expr

| Id of string

6/18/2009 17

Example – lexer

(* file: exprlex.mll *)

let numeric = [‘0’ – ‘9’]

let letter = [‘a’ – ‘z’ ‘A’ – ‘Z’]

rule tokenize = parse

| “+” {Plus_token}

| “-” {Minus_token}

| “*” {Times_token}

| “/” {Divide_token}

| “(” {Left_parenthesis}

| “)” {Right_parenthesis}

| letter (letter | numeric | “_”)* as id {Id_token id}

| [‘ ’ ‘\t’ ‘\n’] {tokenize lexbuf}

| eof {EOL}

6/18/2009 18

Example – parser

(* file: exprparse.mly *)

%{ open Expr

%}

%token <string> Id_token

%token Left_parenthesis Right_parenthesis

%token Times_token Divide_token

%token Plus_token Minus_token

%token EOL

%start main

%type <expr> main

%%

...

6/18/2009 19

Example – parser (exprparse.mly)

expr:

term {$1}

| term Plus_token expr {Plus($1,$3)}

| term Minus_token expr {Minus($1,$3)}

term:

factor {$1}

| factor Times_token term {Mult($1,$3)}

| factor Divide_token term {Div($1,$3)}

factor:

Id_token {Id $1}

| Left_parenthesis expr Right_parenthesis {$2}

main:

| expr EOL {$1}

6/18/2009 20

Example – using parser

#use “expr.ml”;;

…

#use “expparse.ml”;;

…

#use “exprlex.ml”;;

…

let test s =

let lexbuf = Lexing.from_string(s^”\n”) in

main tokenize lexbuf;;

…

test “a + b”;;

- : expr = Plus(Id “a”, Id “b”)

6/18/2009 21

ocamlyacc input

� File format:
%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>

6/18/2009 22

ocamlyacc <header>

� Contains arbitrary OCaml code

� Typically used to give types and functions needed for the
semantic actions of rules and to give specialized error
recovery

� May be omitted

� <footer> is similar. Possibly used to call parser.

6/18/2009 23

ocamlyacc <declarations>

� %token symbol … symbol

� Declare given symbols as tokens

� %token <type> symbol … symbol

� Declare given symbols as token constructors, taking an argument
of type type

� %start symbol … symbol

� Declare given symbols as entry points; functions of same names
in <grammar>.ml

6/18/2009 24

ocamlyacc <declarations>

� %type <type> symbol … symbol

� Specify type of attributes for given symbols. Mandatory for start
symbol.

� %left symbol … symbol

� %right symbol … symbol

� %nonassoc symbol … symbol

� Associate precedences and associativities to given symbols.

� Same line, same precedende; earlier line, lower precedence
(broadest scope)

6/18/2009 25

ocamlyacc <rules>

� nonterminal:

symbol … symbol { semantic_action }

| …

| symbol … symbol { semantic_action }

;

� Semantic actions are arbitrary OCaml expressions

� Must be of the same type as declared (or inferred) for
nonterminal

� Access values semantic attributes of symbols by position: $1 for
first symbol, $2 for second, etc.

6/18/2009 26

Next class

� Finish up parsing (yay!)

� Big question: how to choose whether to shift or reduce?

� ocamlyacc uses a method – called LALR(1) – to construct tables
that say which action to take.

� There are times when there is no good way to make this
decision.

� ocamlyacc will reject grammar and give an error message

� In bottom-up parsing, these are called conflicts. There are two
types: shift/reduce and reduce/reduce.

� As with top-down parsing, these problems can sometimes be
resolved by modifying the grammar.

� We will discuss these conflicts and give some advice on how to
resolve them.

6/18/2009 27

