CS 421 Lecture 7: Grammars and parsing

- Announcements
- MP2 review
- Lecture outline
- Context-free grammars
- Top-down, a.k.a. recursive descent, parsing

Announcements

- TA office hours
- I2CS: Tue, Thu 4-5pm CDT
- On-campus: Wed 4-5pm CDT
- MP2 solutions posted

MP2 review

- Problem 7

```
flatten : `a list list -> `a list
flatten [[1;2;3]; [4;5]; [8;2;3;4]];;
let rec flatten lst = match lst with .
```


MP2 review

- Problem 7

```
flatten : `a list list -> `a list
flatten [[1;2;3]; [4;5]; [8;2;3;4]];;
let rec flatten lst = match lst with
    [] -> []
    | []::xs -> flatten xs
    | (x::xs)::ys -> x::(flatten (xs::ys));;
```


Review: compiler front-end

Intro to grammars and languages

- Grammar
- Finite set of terminals
- Finite set of non-terminals
- Finite set of production rules
- Start symbol
- Language
- Set of strings recognized by a grammar

Grammars: Chomsky hierarchy

- Unrestricted
- Recursively-enumerable languages
- Recognized by a Turing machine
- Context-sensitive
- Context-sensitive languages
- Recognized by a linear bounded automaton (LBA)
- Context-free
- Context-free languages
- Recognized by a push-down automaton (PDA)
- Regular
- Regular languages
- Recognized by a finite state automaton (FSA)

Context-free grammar

- Given:
- Set of terminals (tokens) T
- Set of non-terminals (variables) V
- A cfg G is a set of productions of the form
- $A \rightarrow X_{1} \ldots X_{n} \quad(n \geq 0)$
where
- $A \in V, X_{1} \ldots X_{n} \in G=V \cup T$
- One symbol designated as "start symbol"

Notation

- $A \rightarrow X_{1} \ldots X_{n}$
- Also written $A::=X_{1} \ldots X_{n}$
- When $n=0$, write $A \rightarrow \varepsilon$
- Instead of $A \rightarrow$
- When there is more than one production from A, say
- $A \rightarrow X_{1} \ldots X_{n}$ and $A \rightarrow Y_{1} \ldots Y_{n}$
- Instead write: $A \rightarrow X_{1} \ldots X_{n} \mid Y_{1} \ldots Y_{n}$

Example

- Expressions
- Exp \rightarrow intlit | variable | Exp + Exp | Exp * Exp
- Sentences include
- 3
- X
- 3+x
- 3+x*y
- Tree representation

Example

- Method definition:

```
MethodDef }->\mathrm{ Type ident '(' Args ')' '{' Stmtlist '}'
Args }->\varepsilon| NonEmptyArg
NonEmptyArgs }->\mathrm{ Type ident | Type ident ',' NonEmptyArgs
Stmtlist }->\varepsilon||\mathrm{ Stmt Stmtlist
Type }->\mathrm{ ident | int | boolean
```

- Sentence:
int fun(boolean b) \{ \}
- Tree representation
" ??

Syntax trees

- A (concrete) syntax tree is a tree whose internal nodes are labeled with non-terminals such that if a node is labeled A, its children are leabeled X_{1}, \ldots, X_{n} for some production $A \rightarrow X_{1}, \ldots, X_{n}$
- Sentences of a grammar are frontiers of the syntax tree whose root is the start symbol.

More notation

- Backus-Naur Form (BNF)
- Symbol \rightarrow expression
- Expression: terminals, symbols, |
- Extended BNF (EBNF)
- Symbol \rightarrow "terminal" | 'terminal' | <symbol> | ...;
- RegExp-like extensions: exp*, exp+, exp?, etc.

Example

- EBNF:
- $A \rightarrow X_{1} \ldots X_{i}\left(Y_{1} \ldots Y_{k}\right)^{*} X_{i+1} \ldots X_{n}$
- $A \rightarrow X_{1} \ldots X_{i}$ В $X_{i+1} \ldots X_{n}$
- $B \rightarrow \varepsilon \mid Y_{1} \ldots Y_{k} B$
- $A \rightarrow X_{1} \ldots X_{i}\left(Y_{1} \ldots Y_{k}\right)+X_{i+1} \ldots X_{n}$
- $A \rightarrow X_{1} \ldots X_{i}$ В $X_{i+1} \ldots X_{n}$
- $B \rightarrow Y_{1} \ldots Y_{k} \mid Y_{1} \ldots Y_{k} B$
- $A \rightarrow X_{1} \ldots X_{i}\left(Y_{1} \ldots Y_{k}\right) ? X_{i+1} \ldots X_{n}$
- $A \rightarrow X_{1} \ldots X_{i}$ В $X_{i+1} \ldots X_{n}$
- $B \rightarrow \varepsilon \mid Y_{1} \ldots Y_{k}$
- Args rule from previous example:

Args \rightarrow (Type ident (',' Type ident)*)?

Parsing

- From list of tokens, construct a syntax tree
- Simpler problem:
" Determine whether list of tokens is a sentence ("recognition")
- Two types of parsers: top-down and bottom-up
- We will discuss recursive descent (top-down) and LR(1) (bottom-up) parsers
- Not all grammars can be parsed by any particular method
- Recursive descent is easier to use by hand
- LR(1) requires a generator
- LR(1) more powerful: can be applied to more grammars

Top-down parsing by recursive descent

- Idea: Define a function parsea for each non-terminal A.
- Given token, decide which production from A to apply, say $A \rightarrow$ X_{1}, \ldots, X_{n}.
- Go through X_{1}, \ldots, X_{n} in sequence, consuming tokens in X_{1}, \ldots, $X_{n \prime}$ and recursively calling parsing function parsex X_{i} for nonterminals.
- Details: parseA : token list -> token list (almost)
- Each function will return a list of remaining tokens
- Error is reported if any of the X_{i} is a token that does not match the input token.
- Input is accepted if parse function returns empty list.

parseA: actual type

```
parseA : token list -> (token list) option
type `a option = None | Some `a
```


Example 1

- $\left.A \rightarrow i d\right|^{\prime}\left(A^{\prime}\right)^{\prime}$
- Define parseA : token list -> (token list) option
- 'a option $=$ None | Some 'a
- parseA toklis matches first part of toklist and returns remainder of toklis, or None if syntax error.

Example 1 (cont.)

- $\left.A \rightarrow i d\right|^{\prime}\left({ }^{\prime} A^{\prime}\right)^{\prime}$

```
type token = IDENT of string | LPAREN | RPAREN
let rec parseA toklis = match toklis with
            IDENT x :: tls -> Some tls
    | LPAREN :: tls -> (match (parseA tls) with
                        Some (h::tls') -> if h = RPAREN
                                then Some tls'
                        else None
        | _ -> None)
    | _ -> None;;
```


Example 2

- $\mathrm{A} \rightarrow \mathrm{id} \mid{ }^{\prime}\left(\mathrm{C}^{\prime}{ }^{\prime}\right)^{\prime}$
- $B \rightarrow$ int \| A
type token $=$ IDENT of string | LPAREN | RPAREN | INT of int
let rec parseA toklis = match toklis with
IDENT x : : tls -> Some tls
| LPAREN : : tls ->
(match (parseB tls) with
Some (h::tls') -> if $h=$ RPAREN
then Some tls'
else None
| _ -> None)
| _ -> None
and parseB toklis = match toklis with
INT i : : tls -> Some tls
| _ -> parseA toklis; ;

Example 3

- Consider this grammar:
- $\left.\mathrm{A} \rightarrow \mathrm{id}\right|^{\prime}\left({ }^{\prime} \mathrm{B}^{\prime}\right)^{\prime}$
- $B \rightarrow A \mid A ~{ }^{\prime}+{ }^{\prime} B$
- Unfortunately, cannot parse using recursive descent
- This grammar, which has the same sentences:
- A \rightarrow id | '($\left.B^{\prime}\right)^{\prime}$
- B $\rightarrow \mathrm{AC}$
- C $\rightarrow{ }^{\text {' }}+$ ' A C $\mid \varepsilon$
- Is parsable by recursive descent

Example 3 (cont.)

- Tree representation: $((x+y)+z)$

Example 3 (cont.)

```
let rec parseA toklis = match toklis with
        IDENT x :: tls -> Some tls
    | LPAREN :: tls ->
        (match (parseB tls) with
            Some (h::tls') -> if h = RPAREN
                        then Some tls'
                        else None
                | _ -> None)
    | _ -> None
and parseB toklis = match parseA toklis with
        Some tls' -> parseC tls' | None -> None
and parseC toklis = match toklis with
        PLUS :: tls' -> (match parseA tls' with
                            Some tls'r -> parseC tls''
                        | None -> None)
    | _ -> Some toklis;;
```


Generating syntax trees - ex. 1b

- For simple grammar, $A \rightarrow$ id | '(A ')', define type for syntax trees:

```
type cst = A1 of token * cst * token | A2 of token
```

- Parse function returns pair of remaining tokens and syntax tree created by this non-terminal:

```
let rec parseA toklis = match toklis with
    IDENT x :: tls -> Some (tls, A2 (IDENT x))
    | LPAREN :: tls ->
        (match (parseA tls) with
            Some (h::tls', t) -> if h = RPAREN
                            then Some (tls', A1 (LPAREN, t, RPAREN))
                            else None
    | _ -> None)
    | _ -> None;;
```


Generating syntax trees - ex. 2b

- Don't need to create specialized cst type - can use general tree structure.

```
type tree = Node of string * tree list | Leaf of token;;
let rec parseA toklis = match toklis with
        IDENT x :: tls -> Some (tls, Node("A1", [Leaf (IDENT x)]))
    | LPAREN :: tls ->
        (match (parseB tls) with
            Some (h::tls', t)
                -> if h = RPAREN
                        then Some (tls', Node("A2", [Leaf LPAREN; t; RPAREN]))
                        else None
            | _ -> None)
    | _ -> None
```


Generating syntax trees - ex. 2b

```
and parseB toklis = match toklis with
    INT i :: tls -> Some (tls, Node("B1", [Leaf (INT i)]))
    | _ -> (match parseA toklis with
            Some (tls, t) -> Some(tls, Node("B2", [t]))
            | None -> None);;
```


Generating syntax trees - ex. 3b

```
let rec parseA toklis = match toklis with
        IDENT x :: tls -> Some (tls, Leaf (IDENT x))
    | LPAREN :: tls ->
        (match (parseB tls) with
            Some (h::tls', t) ->
                if h = RPAREN
                        then Some (tls', Node("A1", [Leaf LPAREN;
                                t; RPAREN]))
                            else None
            | _ -> None)
    | _ -> None
and parseB toklis = match parseA toklis with
            Some (tls, t) -> (match parseC tls' with
                Some (tls'', t') -> Some(tls'', Node("B", [t; t']))
            | None -> None)
    | None -> None
```


Generating syntax trees - ex. 3b

```
and parseC toklis = match toklis with
    PLUS :: tls' ->
            (match parseA tls' with
            Some (tls'', t) -> (match parseC tls'' with
                                Some (tls'r', t') -> Some(tls'r',
                                    Node("C1", [Leaf PLUS; t; t']))
                            | None -> None)
            | None -> None)
    | _ -> Some (toklis, Node("C2", []));;
```


Generating abstract syntax trees

- Concrete syntax tree shows every production, even though some are not semantically significant, e.g., no reason to keep tokens '(' and ')' in tree
- AST should have simplest structure that retains all significant details
- For this grammar, should retain effect of parenthesization
- Would be important if we used minus instead of plus
- AST form: interior nodes of arbitrary arity, labeled with "PLUS"; leaf nodes labeled with identifier

AST for example 3

- Convert CST to AST
- ... or generate AST during parsing

Generating ASTs - ex. 3c

```
let rec parseA toklis = match toklis with
    IDENT x :: tls -> Some (tls, Leaf (IDENT x))
    | LPAREN :: tls ->
        (match (parseB tls) with
            Some (h::tls', t) -> if h = RPAREN
                                    then Some (tls', t)
                                    else None
                | _ -> None)
    | _ -> None
and parseB toklis = match parseA toklis with
        Some (tls', t) -> (match parseC tls' with
            Some (tls'r, []) -> Some(tls'', t)
            | Some (tls'', tlis) ->
                                Some(tls"', Node("+", t :: tlis))
            | None -> None)
    | None -> None
```


Generating ASTs - ex. 3c

```
and parseC toklis = match toklis with
    PLUS :: tls' ->
            (match parseA tls' with
            Some (tls'', t) -> (match parseC tls'' with
                                Some (tls'r', t') -> Some(tls'r', t :: t')
                            | None -> None)
            | None -> None)
    | _ -> Some (toklis, []);;
```


Next class

- More formal treatment of recursive descent parsing
- When can a grammar be parsed using recursive descent?
- "LL1()" condition
- Ambiguity
- Grammar transformations

