
CS 421 Lecture 7: Grammars and parsing

� Announcements

� MP2 review

� Lecture outline

� Context-free grammars

� Top-down, a.k.a. recursive descent, parsing

6/14/2009 1

Announcements

� TA office hours

� I2CS: Tue, Thu 4-5pm CDT

� On-campus: Wed 4-5pm CDT

� MP2 solutions posted

6/14/2009 2

MP2 review

� Problem 7
flatten : ‘a list list -> ‘a list

flatten [[1;2;3]; [4;5]; [8;2;3;4]];;

let rec flatten lst = match lst with …

6/14/2009 3

MP2 review

� Problem 7
flatten : ‘a list list -> ‘a list

flatten [[1;2;3]; [4;5]; [8;2;3;4]];;

let rec flatten lst = match lst with

[] -> []

| []::xs -> flatten xs

| (x::xs)::ys -> x::(flatten (xs::ys));;

6/14/2009 4

Review: compiler front-end

6/14/2009 5

TokensSource
Lexer

AST
Parser

Intro to grammars and languages

� Grammar

� Finite set of terminals

� Finite set of non-terminals

� Finite set of production rules

� Start symbol

� Language

� Set of strings recognized by a grammar

6/14/2009 6

Grammars: Chomsky hierarchy

� Unrestricted

� Recursively-enumerable languages

� Recognized by a Turing machine

� Context-sensitive

� Context-sensitive languages

� Recognized by a linear bounded automaton (LBA)

� Context-free

� Context-free languages

� Recognized by a push-down automaton (PDA)

� Regular

� Regular languages

� Recognized by a finite state automaton (FSA)

6/14/2009 7

Context-free grammar

� Given:

� Set of terminals (tokens) T

� Set of non-terminals (variables) V

� A cfg G is a set of productions of the form

� A → X1 … Xn (n ≥ 0)

where
� A∈ V, X1 … Xn ∈ G = V ∪ T

� One symbol designated as “start symbol”

6/14/2009 8

Notation

� A → X1 … Xn

� Also written A ::= X1 … Xn

� When n = 0, write A → ε

� Instead of A →

� When there is more than one production from A, say

� A → X1 … Xn and A → Y1 … Yn

� Instead write: A → X1 … Xn | Y1 … Yn

6/14/2009 9

Example

� Expressions

� Exp → intlit | variable | Exp + Exp | Exp * Exp

� Sentences include

� 3

� x

� 3+x

� 3+x*y

� Tree representation

6/14/2009 10

Example

� Method definition:
MethodDef → Type ident ‘(’ Args ‘)’ ‘{‘ Stmtlist ‘}’

Args → ε | NonEmptyArgs

NonEmptyArgs → Type ident | Type ident ‘,’ NonEmptyArgs

Stmtlist → ε | Stmt Stmtlist

Type → ident | int | boolean

� Sentence:
int fun(boolean b) { }

� Tree representation

� ??

6/14/2009 11

Syntax trees

� A (concrete) syntax tree is a tree whose internal nodes
are labeled with non-terminals such that if a node is
labeled A, its children are leabeled X1, … , Xn for some
production A → X1, … , Xn

� Sentences of a grammar are frontiers of the syntax tree
whose root is the start symbol.

6/14/2009 12

More notation

� Backus-Naur Form (BNF)

� Symbol → expression

� Expression: terminals, symbols, |

� Extended BNF (EBNF)

� Symbol → “terminal” | ‘terminal’ | <symbol> | … ;

� RegExp-like extensions: exp*, exp+, exp?, etc.

6/14/2009 13

Example

� EBNF:

� A → X1 … Xi (Y1 … Yk)* Xi+1 … Xn

� A → X1 … Xi B Xi+1 … Xn

� B → ε | Y1 … Yk B

� A → X1 … Xi (Y1 … Yk)+ Xi+1 … Xn

� A → X1 … Xi B Xi+1 … Xn

� B → Y1 … Yk | Y1 … Yk B

� A → X1 … Xi (Y1 … Yk)? Xi+1 … Xn

� A → X1 … Xi B Xi+1 … Xn

� B → ε | Y1 … Yk

� Args rule from previous example:
Args → (Type ident (‘,’ Type ident)*)?

6/14/2009 14

Parsing

� From list of tokens, construct a syntax tree

� Simpler problem:

� Determine whether list of tokens is a sentence (“recognition”)

� Two types of parsers: top-down and bottom-up

� We will discuss recursive descent (top-down) and LR(1)
(bottom-up) parsers

� Not all grammars can be parsed by any particular method

� Recursive descent is easier to use by hand

� LR(1) requires a generator

� LR(1) more powerful: can be applied to more grammars

6/14/2009 15

Top-down parsing by recursive descent

� Idea: Define a function parseA for each non-terminal A.

� Given token, decide which production from A to apply, say A →
X1, … , Xn.

� Go through X1, … , Xn in sequence, consuming tokens in X1, … ,
Xn, and recursively calling parsing function parseX

i
for non-

terminals.

� Details: parseA : token list -> token list (almost)

� Each function will return a list of remaining tokens

� Error is reported if any of the Xi is a token that does not match
the input token.

� Input is accepted if parse function returns empty list.

6/14/2009 16

parseA: actual type

parseA : token list -> (token list) option

type ‘a option = None | Some ‘a

6/14/2009 17

Example 1

� A → id | ‘(‘ A ‘)’

� Define parseA : token list -> (token list) option

� ‘a option = None | Some ‘a

� parseA toklis matches first part of toklist and returns
remainder of toklis, or None if syntax error.

6/14/2009 18

Example 1 (cont.)

� A → id | ‘(‘ A ‘)’

type token = IDENT of string | LPAREN | RPAREN

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some tls

| LPAREN :: tls -> (match (parseA tls) with

Some (h::tls') -> if h = RPAREN

then Some tls‘

else None

| _ -> None)

| _ -> None;;

6/14/2009 19

Example 2

� A → id | ‘(‘ B ‘)’

� B → int | A
type token = IDENT of string | LPAREN | RPAREN | INT of int

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some tls

| LPAREN :: tls ->

(match (parseB tls) with

Some (h::tls') -> if h = RPAREN

then Some tls'

else None

| _ -> None)

| _ -> None

and parseB toklis = match toklis with

INT i :: tls -> Some tls

| _ -> parseA toklis;;

6/14/2009 20

Example 3

� Consider this grammar:

� A → id | ‘(‘ B ‘)’

� B → A | A ‘+’ B

� Unfortunately, cannot parse using recursive descent

� This grammar, which has the same sentences:

� A → id | ‘(‘ B ‘)’

� B → A C

� C → ‘+’ A C | ε

� Is parsable by recursive descent

6/14/2009 21

Example 3 (cont.)

� Tree representation: ((x + y) + z)

6/14/2009 22

Example 3 (cont.)

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some tls

| LPAREN :: tls ->

(match (parseB tls) with

Some (h::tls’) -> if h = RPAREN

then Some tls’

else None

| _ -> None)

| _ -> None

and parseB toklis = match parseA toklis with

Some tls’ -> parseC tls’ | None -> None

and parseC toklis = match toklis with

PLUS :: tls’ -> (match parseA tls’ with

Some tls’’ -> parseC tls’’

| None -> None)

| _ -> Some toklis;;

6/14/2009 23

Generating syntax trees – ex. 1b

� For simple grammar, A → id | ‘(‘ A ‘)’, define type for syntax trees:

type cst = A1 of token * cst * token | A2 of token

� Parse function returns pair of remaining tokens and syntax tree
created by this non-terminal:

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some (tls, A2 (IDENT x))

| LPAREN :: tls ->

(match (parseA tls) with

Some (h::tls’, t) -> if h = RPAREN

then Some (tls’, A1 (LPAREN, t, RPAREN))

else None

| _ -> None)

| _ -> None;;

6/14/2009 24

Generating syntax trees – ex. 2b

� Don’t need to create specialized cst type – can use
general tree structure.

type tree = Node of string * tree list | Leaf of token;;

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some (tls, Node(“A1”, [Leaf (IDENT x)]))

| LPAREN :: tls ->

(match (parseB tls) with

Some (h::tls’, t)

-> if h = RPAREN

then Some (tls’, Node(“A2”, [Leaf LPAREN; t; RPAREN]))

else None

| _ -> None)

| _ -> None

...

6/14/2009 25

Generating syntax trees – ex. 2b

and parseB toklis = match toklis with

INT i :: tls -> Some (tls, Node(“B1”, [Leaf (INT i)]))

| _ -> (match parseA toklis with

Some (tls, t) -> Some(tls, Node(“B2”, [t]))

| None -> None);;

6/14/2009 26

Generating syntax trees – ex. 3b

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some (tls, Leaf (IDENT x))

| LPAREN :: tls ->

(match (parseB tls) with

Some (h::tls’, t) ->

if h = RPAREN

then Some (tls’, Node(“A1”, [Leaf LPAREN;

t; RPAREN]))

else None

| _ -> None)

| _ -> None

and parseB toklis = match parseA toklis with

Some (tls, t) -> (match parseC tls’ with

Some (tls’’, t’) -> Some(tls’’, Node(“B”, [t; t’]))

| None -> None)

| None -> None

...

6/14/2009 27

Generating syntax trees – ex. 3b

and parseC toklis = match toklis with

PLUS :: tls’ ->

(match parseA tls’ with

Some (tls’’, t) -> (match parseC tls’’ with

Some (tls’’’, t’) -> Some(tls’’’,

Node(“C1”, [Leaf PLUS; t; t’]))

| None -> None)

| None -> None)

| _ -> Some (toklis, Node(“C2”, []));;

6/14/2009 28

Generating abstract syntax trees

� Concrete syntax tree shows every production, even
though some are not semantically significant, e.g., no
reason to keep tokens ‘(‘ and ‘)’ in tree

� AST should have simplest structure that retains all
significant details

� For this grammar, should retain effect of
parenthesization

� Would be important if we used minus instead of plus

� AST form: interior nodes of arbitrary arity, labeled with
“PLUS”; leaf nodes labeled with identifier

6/14/2009 29

AST for example 3

� Convert CST to AST

� … or generate AST during parsing

6/14/2009 30

Generating ASTs – ex. 3c

let rec parseA toklis = match toklis with

IDENT x :: tls -> Some (tls, Leaf (IDENT x))

| LPAREN :: tls ->

(match (parseB tls) with

Some (h::tls’, t) -> if h = RPAREN

then Some (tls’, t)

else None

| _ -> None)

| _ -> None

and parseB toklis = match parseA toklis with

Some (tls’, t) -> (match parseC tls’ with

Some (tls’’, []) -> Some(tls’’, t)

| Some (tls’’, tlis) ->

Some(tls’’, Node(“+”, t :: tlis))

| None -> None)

| None -> None

...

6/14/2009 31

Generating ASTs – ex. 3c

and parseC toklis = match toklis with

PLUS :: tls’ ->

(match parseA tls’ with

Some (tls’’, t) -> (match parseC tls’’ with

Some (tls’’’, t’) -> Some(tls’’’, t :: t’)

| None -> None)

| None -> None)

| _ -> Some (toklis, []);;

6/14/2009 32

Next class

� More formal treatment of recursive descent parsing

� When can a grammar be parsed using recursive descent?

� “LL1()” condition

� Ambiguity

� Grammar transformations

6/14/2009 33

