CS 421 Lecture 7: Grammars and parsing

- Announcements
- MP2 review
- Lecture outline
 - Context-free grammars
 - Top-down, a.k.a. recursive descent, parsing

- TA office hours
 - I2CS: Tue, Thu 4-5pm CDT
 - On-campus: Wed 4-5pm CDT
- MP2 solutions posted

MP2 review

Problem 7

flatten : `a list list -> `a list

flatten [[1;2;3]; [4;5]; [8;2;3;4]];;

let rec flatten lst = match lst with ...

MP2 review

Problem 7

```
flatten : `a list list -> `a list
flatten [[1;2;3]; [4;5]; [8;2;3;4]];;
let rec flatten lst = match lst with
[] -> []
| []::xs -> flatten xs
| (x::xs)::ys -> x::(flatten (xs::ys));;
```

Review: compiler front-end

Intro to grammars and languages

Grammar

- Finite set of *terminals*
- Finite set of *non-terminals*
- Finite set of *production rules*
- Start symbol
- Language
 - Set of strings recognized by a grammar

Grammars: Chomsky hierarchy

- Unrestricted
 - Recursively-enumerable languages
 - Recognized by a Turing machine
- Context-sensitive
 - Context-sensitive languages
 - Recognized by a linear bounded automaton (LBA)
- Context-free
 - Context-free languages
 - Recognized by a push-down automaton (PDA)
- Regular
 - Regular languages
 - Recognized by a finite state automaton (FSA)

Context-free grammar

- Given:
 - Set of terminals (tokens) T
 - Set of non-terminals (variables) V
- A cfg *G* is a set of *productions* of the form
 - $A \rightarrow X_1 \dots X_n$ $(n \ge 0)$

where

- $A \in V, X_1 \dots X_n \in G = V \cup T$
- One symbol designated as "start symbol"

Notation

- $A \to X_1 \dots X_n$
 - Also written $A ::= X_1 \dots X_n$
- When n = 0, write $A \rightarrow \varepsilon$
 - Instead of $A \rightarrow$
- When there is more than one production from *A*, say
 - $A \rightarrow X_1 \dots X_n$ and $A \rightarrow Y_1 \dots Y_n$
 - Instead write: $A \rightarrow X_1 \dots X_n \mid Y_1 \dots Y_n$

Example

- Expressions
 - Exp \rightarrow intlit | variable | Exp + Exp | Exp * Exp
- Sentences include
 - 3
 - X
 - 3+x
 - 3+x*y
- Tree representation

Method definition:

Sentence:

int fun(boolean b) { }

Tree representation

• ??

- A (concrete) *syntax tree* is a tree whose internal nodes are labeled with non-terminals such that if a node is labeled A, its children are leabeled X_1, \ldots, X_n for some production $A \rightarrow X_1, \ldots, X_n$
- Sentences of a grammar are *frontiers* of the syntax tree whose root is the start symbol.

More notation

- Backus-Naur Form (BNF)
 - Symbol \rightarrow expression
 - Expression: terminals, symbols, |
- Extended BNF (EBNF)
 - Symbol \rightarrow "terminal" | 'terminal' | <symbol > | ... ;
 - RegExp-like extensions: exp*, exp+, exp?, etc.

Example

EBNF:

•
$$A \rightarrow X_1 \dots X_i (Y_1 \dots Y_k)^* X_{i+1} \dots X_n$$

• $A \rightarrow X_1 \dots X_i B X_{i+1} \dots X_n$
• $B \rightarrow \varepsilon \mid Y_1 \dots Y_k B$

•
$$A \rightarrow X_1 \dots X_i (Y_1 \dots Y_k) + X_{i+1} \dots X_n$$

• $A \rightarrow X_1 \dots X_i B X_{i+1} \dots X_n$
• $B \rightarrow Y_1 \dots Y_k | Y_1 \dots Y_k B$

•
$$A \to X_1 \dots X_i$$
 $(Y_1 \dots Y_k)$? $X_{i+1} \dots X_n$
• $A \to X_1 \dots X_i$ B $X_{i+1} \dots X_n$
• $B \to \varepsilon \mid Y_1 \dots Y_k$

Args rule from previous example: Args → (Type ident (`,' Type ident)*)?

- From list of tokens, construct a syntax tree
- Simpler problem:
 - Determine whether list of tokens is a sentence ("recognition")
- Two types of parsers: top-down and bottom-up
- We will discuss recursive descent (top-down) and LR(1) (bottom-up) parsers
 - Not all grammars can be parsed by any particular method
 - Recursive descent is easier to use by hand
 - LR(1) requires a generator
 - LR(1) more powerful: can be applied to more grammars

Top-down parsing by recursive descent

- Idea: Define a function parseA for each non-terminal A.
 - Given token, decide which production from *A* to apply, say $A \rightarrow X_1, \dots, X_n$.
 - Go through X₁, ..., X_n in sequence, consuming tokens in X₁, ..., X_n, and recursively calling parsing function parseX_i for non-terminals.
- Details: parseA : token list -> token list (almost)
 - Each function will return a list of *remaining* tokens
 - Error is reported if any of the X_i is a token that does not match the input token.
 - Input is accepted if parse function returns empty list.

parseA: actual type

parseA : token list -> (token list) option

type 'a option = None | Some 'a

Example 1

- A → id | '(' A ')'
- Define parseA : token list -> (token list) option
 - `a option = None | Some `a
- parseA toklis matches first part of toklist and returns remainder of toklis, or None if syntax error.

Example 1 (cont.)

```
A → id | `(' A `)'
```

| _ -> None;;

Example 2

A → id | `(` B `)'

```
INT i :: tls -> Some tls
| _ -> parseA toklis;;
```

Example 3

- Consider this grammar:
 - A → id | `(` B `)'
 - $B \rightarrow A \mid A + B$
 - Unfortunately, cannot parse using recursive descent
- This grammar, which has the same sentences:
 - A → id | `(` B `)'
 - $B \rightarrow A C$
 - $C \rightarrow +' A C \mid \epsilon$
 - Is parsable by recursive descent

Example 3 (cont.)

Tree representation: ((x + y) + z)

Example 3 (cont.)

```
let rec parseA toklis = match toklis with
    IDENT x :: tls -> Some tls
  | LPAREN :: tls ->
      (match (parseB tls) with
          Some (h::tls') -> if h = RPAREN
                            then Some tls'
                            else None
       | _ -> None)
  | _ -> None
and parseB toklis = match parseA toklis with
     Some tls' -> parseC tls' | None -> None
and parseC toklis = match toklis with
    PLUS :: tls' -> (match parseA tls' with
                        Some tls'' -> parseC tls''
                      | None -> None)
   _ -> Some toklis;;
```

Generating syntax trees – ex. 1b

• For simple grammar, $A \rightarrow id \mid (A)'$, define type for syntax trees:

type cst = A1 of token * cst * token | A2 of token

 Parse function returns pair of remaining tokens and syntax tree created by this non-terminal:

Generating syntax trees – ex. 2b

 Don't need to create specialized cst type – can use general tree structure.

```
type tree = Node of string * tree list | Leaf of token;;
let rec parseA toklis = match toklis with
    IDENT x :: tls -> Some (tls, Node("A1", [Leaf (IDENT x)]))
    LPAREN :: tls ->
    (match (parseB tls) with
        Some (h::tls', t)
            -> if h = RPAREN
                 then Some (tls', Node("A2", [Leaf LPAREN; t; RPAREN]))
                 else None
                      _ -> None)
                      _ _-> None
```

• • •

Generating syntax trees – ex. 2b

```
and parseB toklis = match toklis with
    INT i :: tls -> Some (tls, Node("B1", [Leaf (INT i)]))
    | _ -> (match parseA toklis with
        Some (tls, t) -> Some(tls, Node("B2", [t]))
        | None -> None);;
```

Generating syntax trees – ex. 3b

```
let rec parseA toklis = match toklis with
    IDENT x :: tls -> Some (tls, Leaf (IDENT x))
  | LPAREN :: tls ->
      (match (parseB tls) with
          Some (h::tls', t) ->
                       if h = RPAREN
                       then Some (tls', Node("A1", [Leaf LPAREN;
                                  t; RPAREN]))
                       else None
        | __ -> None)
  _ -> None
and parseB toklis = match parseA toklis with
     Some (tls, t) \rightarrow (match parseC tls' with
                 Some (tls'', t') -> Some(tls'', Node("B", [t; t']))
               | None -> None)
   | None -> None
```

• • •

Generating syntax trees – ex. 3b

Generating abstract syntax trees

- Concrete syntax tree shows every production, even though some are not *semantically significant*, e.g., no reason to keep tokens '(' and ')' in tree
- AST should have simplest structure that retains all significant details
- For this grammar, should retain effect of parenthesization
 - Would be important if we used minus instead of plus
- AST form: interior nodes of arbitrary arity, labeled with "PLUS"; leaf nodes labeled with identifier

AST for example 3

Convert CST to AST

• ... or generate AST during parsing

Generating ASTs – ex. 3c

```
let rec parseA toklis = match toklis with
    IDENT x :: tls -> Some (tls, Leaf (IDENT x))
  | LPAREN :: tls ->
      (match (parseB tls) with
          Some (h::tls', t) -> if h = RPAREN
                               then Some (tls', t)
                               else None
        | _ -> None)
  -> None
and parseB toklis = match parseA toklis with
     Some (tls', t) -> (match parseC tls' with
                 Some (tls'', []) -> Some(tls'', t)
               | Some (tls'', tlis) ->
                         Some(tls'', Node("+", t :: tlis))
               | None -> None)
   | None -> None
```

• • •

Generating ASTs – ex. 3c

```
and parseC toklis = match toklis with
PLUS :: tls' ->
    (match parseA tls' with
        Some (tls'', t) -> (match parseC tls'' with
        Some (tls''', t') -> Some(tls''', t :: t')
        None -> None)
        None -> None)
        None -> None)
        L_-> Some (toklis, []);;
```


- More formal treatment of recursive descent parsing
 - When can a grammar be parsed using recursive descent?
 - "LL1()" condition
 - Ambiguity
 - Grammar transformations