
CS 421 Lecture 6: Regular expressions

� Announcements

� Lecture outline

� Regular expressions

� Ocamllex

6/8/2009 1

Announcements

� MP2 extension and update

� New due date 1:00pm Friday, June 12

� Problem 10 has been updated

� “Valid” old solutions will get full credit

� MP3 has been posted

� Due 1:00pm Wed, June 17

� Warning: more work than the first MPs

� Collaboration is allowed in two-person teams

Overview of Ocamllex

� Automatic OCaml lexer generator

OCaml definition of

a lexing function

Specification of

tokens via regular

expressions

Ocamllex

Regular expressions

� A regular expression is one of

� ε, a.k.a. “”

� ‘a’ for any character a

� r1r2, where r1 and r2 are regular expr’s

� r1|r2, where r1 and r2 are regular expr’s

� r*, where r is a regualr expr

� Ø

� Every regular expr r represents a set of strings,
denoted L(r)

� Language of r

Regular expression examples

� L(‘a’ ’b’ ’c’) = {“abc”}

� L((‘a’ | ’b’) ‘c’) = {“ac”, “bc”}

� L((‘a’ | ‘b’)* ‘c’) =

{“c”, “ac”, “bc”, “aac”, “abc”, …}

Regular expression examples

� Keywords:

� ‘c’ ‘a’ ‘s’ ‘e’ | ‘c’ ‘ ‘l’ ‘a’ ‘s’ ‘s’ | …

� Operators

� ‘<‘ | ‘<‘ ‘<‘ | ‘<‘ ‘=‘ | …

� Identifiers

� (‘a’ | ‘b’ | … | ‘z’ | ‘A’ | … | ‘Z’)

(‘a’ | ‘b’ | … | ‘z’ | ‘A’ | … | ‘Z’ | ‘0’ | ‘1’ | … | ‘9’)*

� Int literals

� ??

Abbreviations

� “c1c2 … cn” => ‘c1’ ‘c2’ … ‘cn’

� [‘a’ – ‘z’ ‘#’] => ‘a’ | ‘b’ | … | ‘z’ | ‘#’

� [‘a’ ‘w’ ‘#’] => ‘a’ | ‘w’ | ‘#’

� r+ => r(r*)

� r? => r | “”

� [^ ‘a’ – ‘z’] => all chars except ‘a’ – ‘z’

(complement of ‘a’ – ‘z’)

� _ => any single char

Regular expressions examples

� Floating-point literal

[‘0’-’9’]+ . [‘0’-’9’]+ ([‘e’’E’] [‘+’’-’]? [‘0’-’9’]+)?

� Note: r* = (r+)?

Regular expression examples

� C++ style comments (// …)

“//” [^ ‘\n’]* ‘\n’

� C style comments (/* … */)

“/*” ([^ ‘*’] | ‘*’+ [^ ‘*’’/’])* “*/”

Implementing regular expressions

� Translate REs to NFAs

� Translate NFAs to DFAs

Lexing with regular expressions

� Create one large RE:

RE for case {action for case}

| RE for class {action for class}

| …

| RE for idents {action for idents}

| RE for FP lits {action for FP lits}

| RE for Int lits {action for int lits}

� Then add some actions

Lexing with regular expressions (cont.)

� Ambiguous cases:

� Two tokens found, one longer

� Choose the longer one

� Two tokens found, the same length

� Choose the earlier reg. expr.

Ocamllex mechanics

� Put table of regular expressions and
corresponding actions (written in Ocaml) into a
file

<filename>.mll

� Call

ocamllex <filename.mll>

� Produces Ocaml code for a lexical analyzer in

<filename>.ml

Ocamllex input

{header}

let ident = regexp …

rule entrypoint[arg1 … argn] =

parse regexp {action}

and entrypoint[arg1 … argn] =

parse … and …

{trailer}

Ocamllex input

{header}

let ident = regexp …

rule entrypoint[arg1 … argn] =

parse regexp {action}

and entrypoint[arg1 … argn] =

parse … and …

{trailer}

header – ocaml defns

Entrypoint – name of

gen’d function with args

arg1, …, argn, lexbuf

trailer – ocaml defns

Ocamllex input

� header and trailer contain arbitrary Ocaml code
put at top and bottom of <filename>.ml

� let ident = regexp … introduces ident for use in
later regular expressions

Sample input

rule main = parse

[‘0’-’9’]+ { print_string “Int\n” }

| [‘0’-’9’]+’.’[‘0’-’9’] { print_string “Float\n” }

| [‘a’-’z’]+ { print_string “String\n” }

| _ { main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in

print_string “Ready to lex.\n”;

main newlexbuf

}

Ocamllex output

� <filename>.ml contains one lexing function per
entrypoint
� Name of function is name given for entrypoint

� Each entry point becomes an Ocaml function that
takes n+1 arguments
� The extra implicit argument being of type Lexing.lexbuf

� arg1 … argn are for use in action

Ocamllex regular expressions

� ‘a’ : single quoted characters for letters

� _ : matches any character

� eof : special end_of_file marker

� e1e2 : concatenation

� “string” : concatenation of a sequence of
characters

� e1|e2 : choice

Ocamllex regular expressions

� [c1-c2] : choice of any character between first
and second, inclusive, as determined by
character codes

� [^c1-c2] : choice of any character NOT in the set

� e* : same as before

� e+ : same as e e*

� e? : option – was e1|ε

Ocamllex regular expression

� e1#e2 : the characters in e1 but not in e2; e1 and
e2 must describe just sets of characters

� ident : abbreviation for earlier reg exp in let
ident = regexp

� e1 as id : binds the result of e1 to id, to be used
in the associated action

� Example
([‘0’-’9’]+ as decpart ‘.’ ([‘0’-’9’]+ as fracpart …

Ocamllex manual

� More details can be found at

� http://caml.inria.fr/pub/docs/manual-
ocaml/manual026.html

Example: test.mll

{ type result = Int of int | Float of float | String

of string }

let digit = [‘0’-’9’]

let digits = digit+

let lower_case = [‘a’-’z’]

let upper_case = [‘A’-’Z’]

let letter = lower_case | upper_case

let letters = letter+

...

Example: test.mll

rule main = parse

digits’.’digits as f { Float (float_of_string f) }

| digits as n { Int (int_of_string n) }

| letters as s { String s }

| _ { main lexbuf }

{let newlexbuf = (Lexing.from_channel stdin) in

print_string “Ready to lex.\n”;

main newlexbuf }

Example

> ocamllex test.mll

> ocaml

#use “test.ml”

...

val main : Lexing.lexbuf -> result = <fun>

Ready to lex.

hi there 234 5.6

- : result = String “hi”

#

� What happened to the rest?

Example

let b = Lexing.from_channel stdin;;

main b;;

hi 789 there

- : result = String “hi”

main b;;

- : result = Int 789

main b;;

- : result = String “there”

Problem

� How to get the lexer to look at more than the
first token?

� Answer 1: repeatedly call lexing function

� Answer 2: action has to tell it to – recursive calls.
Value of action is token list instead of token.

� Note: already used this with the _ case

Example

rule main = parse

digits’.’digits as f { Float (float_of_string f)

:: main lexbuf }

| digits as n { Int (int_of_string n)

:: main lexbuf }

| letters as s { String s :: main lexbuf }

| eof { [] }

| _ { main lexbuf }

Example results

Ready to lex.

hi there 234 5.6

- : result list = [String “hi”; String “there”; Int

243; Float 5.6]

#

� Use Ctrl-D to send the end_of_file character

Example: dealing with comments

� First attempt
let open_comment = “(*”

let close_comment = “*)”

rule main = parse

...

| open_comment { comment lexbuf }

| eof { [] }

| _ { main lexbuf }

and comment = parse

close_comment { main lexbuf }

| _ { comment lexbuf }

Example: dealing with comments

� Second attempt – nested comments
rule main = parse ...

| open_comment { comment 1 lexbuf }

| eof { [] }

| _ { main lexbuf }

and comment depth = parse

open_comment { comment (depth+1) lexbuf }

| close_comment { if depth = 1

then main lexbuf

else comment (depth-1) lexbuf}

| _ { comment depth lexbuf }

