CS 421 Lecture 6: Regular expressions

= Announcements

= Lecture outline
= Regular expressions
= Ocamllex

6/8/2009 1

Announcements

= MP2 extension and update
= New due date 1:00pm Friday, June 12
= Problem 10 has been updated
= “Valid” old solutions will get full credit

= MP3 has been posted
= Due 1:00pm Wed, June 17
= Warning: more work than the first MPs
= Collaboration is allowed in two-person teams

Overview of Ocamllex

= Automatic OCaml lexer generator

Y e
N]

Specific_:ation of p—) Ocamllex —re—— OCaml| definition of
tokens via regular a lexing function

expressions

~_ ~_

Regular expressions

O —

= A regular expression is one of
= ¢ a.k.a. ™
= 'g for any character a
= r,r,, Where r; and r, are regular expr’s
= r,|r,, where r; and r, are regular expr’s
= r*, where r is a regualr expr
o)
= Every regular expr r represents a set of strings,
denoted L(r)

= Language of r

Regular expression examples

O —

- L(\al Ibl ICI) — {\\abcll}
- L((\al | Ibl) \Cl) — {\\aCII, “bC"}

- L((\al | \bl)* \CI) —
{\\CII, \\aCII, “bC", “aaC", “abC", ...}

Regular expression examples

O —

o KeywordS'

\ 7\ 7\ I\ I| I\\II\ I\ I\

C d e
o Operators
=< T S
= [dentifiers
= (|| A D)
Ca’ |0 | . |2 A . |20 M] ..]9
= Int literals
= ??

s'| ..

Abbreviations

\ 14

= "CyCy ... G => '¢;'"'G¢,...'C,

= fa'=Z'#1 => Q@ |'b|..|Z|#

= ['a"'w' '#] => ‘a'|'w|'#

= r+ => r(r¥)

= r? => r|™

= [A'aT="7] => all chars except 'a’ —'7’

(complement of ‘a’ — '2")
o => any single char

Reqgular expressions examples

= Floating-point literal
[\OI_I9[]+] [\01_191]+ ([\eIIEI] [\+II_I]? [\Ol_lgl]+)?

= Note: r* = (r+)?

Regular expression examples

O —

= C++ style comments (// ...)
I AN AR

= C style comments (/* ... */)
A Rl I Bt o R i) ol o

Implementing regular expressions

= Translate REs to NFAs
= Translate NFAs to DFAs

Lexing with regular expressions

O —

= Create one large RE:

RE for case {action for case}
RE for class {action for class}
RE for idents {action for idents}
RE for FP lits {action for FP lits}
RE for Int lits {action for int lits}

= Then add some actions

Lexing with regular expressions (cont.)

O —

= Ambiguous cases:

= Two tokens found, one longer
= Choose the longer one

= Two tokens found, the same length
= Choose the earlier reg. expr.

Ocamllex mechanics

O —

= Put table of regular expressions and
corresponding actions (written in Ocaml) into a
file
<filename>.mll

= Call

ocamllex <filename.mll>

= Produces Ocaml code for a lexical analyzer in
<filename>.ml

Ocamllex input

O —

{header}

let ident = regexp ...

rule entrypoint[argl ... argn] =
parse regexp {action}

and entrypoint[argl ... argn] =
parse ... and ...

{trailer}

Ocamllex input

{header}

let ident = regexp ...

rule entrypoint[argl ... argn] =
parse regexp {action}

and entrypoint[argl ... argn] =

parse ... and ...
] Entrypoint — name of
{traller} gen’d function with args

header — ocaml defns

arg1, ..., argn, lexbuf

trailer — ocaml defns

Ocamllex input

O —

= header and trailer contain arbitrary Ocaml code
out at top and bottom of <filename>.ml

= let /dent = regexp ... introduces /dent for use in
ater regular expressions

Sample input
=

rule main = parse
(Y07 =" 9"]+
[‘O"="97]1+" ./ [Y0"="9"]

[\aI_IZI]_|_

print_string “Int\n” }
print_string “Float\n” }

print_string “String\n” }

main lexbuf }

|

|

| _

{

let newlexbuf = (Lexing.from_channel stdin) in
print_string “Ready to lex.\n”;

main newlexbuf

Ocamllex output

= <filename>.ml contains one lexing function per
entrypoint
= Name of function is nhame given for entrypoint

= Each entry point becomes an Ocaml function that
takes m+1 arguments
= The extra implicit argument being of type Lexing.lexbuf

= argl ... argn are for use in action

Ocamllex regular expressions

O —

= '3’ : single quoted characters for letters
= _: matches any character

= eof : special end_of_file marker

= g,e, : concatenation

= “string” : concatenation of a sequence of
characters

= e,|e, : choice

Ocamllex regular expressions

O —

= [c4-C,] : choice of any character between first
and second, inclusive, as determined by
character codes

= [*cy-¢,] : choice of any character NOT in the set
= e* : same as before

= e+ :same as e e*

= @? : option —was e,|&

Ocamllex regular expression

= e,#e, : the characters in e, but not in e,; e; and
e, must describe just sets of characters

= /dent . abbreviation for earlier reg exp in let
/dent = regexp
= e, as /d: binds the result of e, to /g, to be used

in the associated action

= Example
(['0"="9"]+ as decpart '.” (['0"-"9"]+ as fracpart ..

Ocamllex manual

O —

= More details can be found at

= http://caml.inria.fr/pub/docs/manual-
ocaml/manual026.html

Example: test.mll

{ type result = Int of int | Float of float | String
of string }

let digit = ['0"-"9"]

let digits = digit+

let lower_ _case = [‘'a’-"z"]

let upper_case = [‘A'-"2"]

let letter = lower_case | upper_case

let letters = letter+

Example: test.mll

rule main = parse

digits’ .’digits as £ { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s }
| { main lexbuf }
{let newlexbuf = (Lexing.from_channel stdin) 1in
print_string “Ready to lex.\n”;

main newlexbuf }

Example

O —

> ocamllex test.mll
> ocaml

#use “test.ml”

val main : Lexing.lexbuf -> result = <fun>
Ready to lex.

hli there 234 5.6

— : result = String “hi”

#

= What happened to the rest?

Example

let b = Lexing.from_channel stdinj;;
main b;;

hi 789 there

— : result = String “hi”

main b;;

Int 789

— : result

main b;;

— : result String “there”

Problem

= How to get the lexer to look at more than the
first token?

= Answer 1: repeatedly call lexing function

= Answer 2: action has to tell it to — recursive calls.
Value of action is token list instead of token.

= Note: already used this with the _ case

Example

rule main = parse
digits’ .’digits as £ { Float (float_of_string f)
main lexbuf }
| digits as n { Int (int_of_string n)
main lexbuf }
| letters as s { String s :: main lexbuf }
| eof { [1 }

| { main lexbuf }

Example results

O —

Ready to lex.
hli there 234 5.6

— : result list = [String “hi”; String “there”; Int
243; Float 5.6]

= Use Ctrl-D to send the end of file character

Example: dealing with comments

= First attempt

let open_comment = Y (*”
let close comment = “*x)7”
rule main = parse
| open_comment { comment lexbuf }
| eof { [1 }
| _ { main lexbuf }
and comment = parse
close comment { main lexbuf }

| { comment lexbuf }

Example: dealing with comments

= Second attempt — nested comments

rule main = parse ...
| open_comment { comment 1 lexbuf }
| eof { [1 }
| { main lexbuf }
and comment depth = parse
open_comment { comment (depth+1l) lexbuf }
| close_comment { 1f depth =1

then main lexbuf
else comment (depth-1) lexbuf}
{ comment depth lexbuf }

