
CS 421 Lecture 4: Overview of language
implementation

� Lecture outline

� Static vs. dynamic languages

� Program execution and run-time systems

� Compiler structure

� Some history

6/8/2009 1

6/8/2009 2

Change of pace

� No more OCaml! (* for now… *)

� Different ways to design and implement programming
languages

� Brief history of PLs

Language implementation overview

� Language types

� Static, vs.

� Dynamic

� Implementation approaches

� Compile to machine code, vs.

� Compile to virtual machine code, vs.

� Directly execute (“interpret”)

� Run-time support

� “Raw” machine, vs.

� Extensive run-time support (e.g., garbage collection)

6/8/2009 3

Language types

� Static, a.k.a. “compiled,” a.k.a. “conventional”

� Examples: C, C++, Fortran

� Static type-checking

� “Manual” memory management

� Run-time values not “tagged” – i.e., cannot determine type of
value at run time

� Dynamic, a.k.a. “interpreted”

� Examples: Java, OCaml, Python, Lisp

� Often lack static type-checking (Python, Lisp), but sometimes
have it (Java, OCaml)

� Automatic memory management, a.k.a. garbage collection

� Run-time values are “tagged” – i.e., can determine properties of
values at run time

6/8/2009 4

Type checking – static vs. dynamic

� When is type-checking done?

� Statically, i.e., at compile time

� Dynamically, i.e., at run time. (Values must be tagged in some
way.)

� How strong?

� Strong: no type errors possible, e.g., if program has expression
“x.a”, then x is definitely an object of a class that has a field
named a.

� Weak: programmer may bypass type system

� These are properties of the language, i.e., specified in
the language’s definition.

6/8/2009 5

Type checking (cont.)

� Java:
int f (int x) { return x+1; }

… f(new C()) …

� Ocaml:
let f x = x+1;;

… f true …

� C or C++:
int f (int x) { return x+1; }

… f((int)new C()) …

� Python:
Def f (x):

return x+1

… f([]) …

� Note: Not all errors are type errors – e.g., hd [], or 5/0. Call those value
errors. In Java and Ocaml, no type errors can occur at run time; in Python,
both value and type errors can occur; in C or C++, type errors cannot
normally occur, but you can cause them by injudicious casting.

6/8/2009 6

Automatic memory management

� Consider these programs:

� C:
for (i = 0; i <= Max; i++)

x = malloc(sizeof (float));

� Java:
for (i = 0; i <= Max; i++)

x = new C();

� Suppose Max is a very large number. What will happen?

� Automatic memory management, also called garbage
collection.

6/8/2009 7

Run-time tags

� Suppose you want to write a function classOf(x) that
returns the name of x’s class, where x is a pointer to an

object. It would be like this:

� C++:
void f (void *x) { cout << classOf(x); }

� Java:
void f (Object x) { println(classOf(x)); }

� Is it possible?

� In Java, can see not only the type of a variable, but the
name and fields of its class, and other aspects of run-
time state. This is called reflection.

6/8/2009 8

What compilers do

� Compilers translate high-level language programs (C,
C++, Java, Python, Ocaml, …) to an executable form.

� Conventional: Translate to machine language; load and run.

� “Dynamic:” Translate to “virtual,” or “abstract,” machine
language; virtual machine emulator loads and executes virtual
machine code.

6/8/2009 9

Compiling to machine code

� Compiler knows the target machine code.

� Generates machine instructions, e.g., C compiled for x86:

� Execute directly on machine of correct type.

6/8/2009 10

int f (int x) {

return x+1;

}

.globl f

.type f, @function

f:

pushl %ebp

movl %esp, %ebp

movl 8(%ebp), %eax

addl $1, %eax

popl %ebp

ret

Compiling to a virtual machine

� Compiler translates to a made-up machine language for
which no machine actually exists.

� Generates virtual (or abstract) machine instructions, e.g.
Java:

� A program reads that code and then executes it one
instruction at a time (“emulates” the non-existent
machine)

6/8/2009 11

int f (int x) {

return x+1;

}

iload_1

iconst_1

iadd

ireturn

Interpreter

� Alternate implementation method: Don’t translate the
program at all. Execute the program by traversing its
abstract syntax tree and executing each part. The
program that does this is called an interpreter.

� Hardly ever used any more.

� At least for general-purpose programming languages.

6/8/2009 12

What method is best?

� In principle, either method can be used for any
language.

� In practice, older languages (C, C++, Fortran) are
usually compiled to machine language, while new ones
(Java, OCaml, Python) use virtual machines.

6/8/2009 13

Run-time systems

� Complete set of services available to running programs.
Can range from raw machine to virtual machine:

� “Raw” machine: Just O.S. services, e.g., read/write files; allocate
memory; spawn processes; etc.

� Virtual machine: O.S. services, plus run-time type-checking;
garbage collection; reflection

6/8/2009 14

Executing C programs

� C programs are translated to machine language.

� Run on raw machine

� No run-time type-checking – type errors can go undetected until
they casue a machine-level problem, e.g., null pointer
dereference

� No garbage collection, a.k.a. automatic memory management –
memory allocated (malloc’d) is never available until it is expressly
freed.

6/8/2009 15

Executing Java programs

� javac translates Java programs to Java virtual machine
(JVM) code

� JVM code executed by virtual machine (java)

� VM knows types of all variables – run-time type checks

� Garbage collection – no need to free memory

� Reflection – can discover, e.g., type class of an object, see what
fields it has, etc.

� Many Java virtual machines translate JVM code to native
machine code, either as soon as they are loaded or after
they have executed for a while. This is called just-in-
time compilation.

6/8/2009 16

Executing OCaml programs

� Translated to virtual machine code

� Can compile programs into files, but normally programs
are executed immediately

� Run-time system

� G.C.

� No run-time type checks

6/8/2009 17

Executing Python programs

� Translated to virtual machine code

� Run-time system

� G.C.

� Run-time type checks

6/8/2009 18

Language implementation overview (revisited)

� Language types

� Static, vs.

� Dynamic

� Implementation approaches

� Compile to machine code, vs.

� Compile to virtual machine code, vs.

� Directly execute (“interpret”)

� Run-time support

� “Raw” machine, vs.

� Extensive run-time support (e.g., garbage collection)

6/8/2009 19

Engineering trade-offs

� Different implementations present trade-offs between
different values:

� Fast response time

� Fast execution time

� Type-safety

� Portability

� Implementation complexity

� Desired features depend on the application domain: what
is the language for?

6/8/2009 20

History of languages – 1950s

� Late 1950s:

� FORTRAN

� Not very high level

� Compiler produced
excellent code

� No automatic memory
management

� No recursion

� Static typing

� “Compiled” language

6/8/2009 21

� LISP

� Fully-parenthesized syntax

� Dynamically-allocated lists

� Automatic memory
management

� Recursion

� Dynamic typing

� “Interpreted” language

History of languages – 1960s

� Compiled Languages

� FORTRAN, PL/1, COBOL, ALGOL, PASCAL, SIMULA

� Block structure

� Recursion

� No dynamic allocation

� Interpreted (“dynamic”) languages:

� LISP, APL, BASIC

� Memory management

� Run-time type checking

6/8/2009 22

History of languages – 1970s

� Compiled languages:

� C

� OO languages:

� Smalltalk – interpreted

� CLU, ALPHARD, … – compiled

� Interpreted (“dynamic”) languages:

� Scheme (variant of LISP), ML, PROLOG

6/8/2009 23

History of languages – 1980s to present

� 1980s

� C++ (compiled)

� Objective C (compiled)

� 1990s

� Java

� Python, JavaScript, Perl

� 2000s

� C/C++

� Java/C#

� Python, JavaScript, Ruby, …

6/8/2009 24

Compilers

� Compiler structure

� Abstract syntax tree = tree representation of a program

� Symbol table = properties of names defined in a program

� Type of variables

� Argument types of functions

� Etc.

6/8/2009 25

Source
Front
end

AST

Symbol

table

Back
end

Machine

or VM

code

Compiler front end

� Front end divided into three phases:

6/8/2009 26

Source Lexer Token

file

ASTParser Symbol

table

Type
checking

Scanner

Tokenizer

History of front ends

� 1950s – lexing, parsing by ad hoc means

� Mid-50s – Chomsky hierarchy:

6/8/2009 27

Context-free

grammars

Regular

grammars

PDA

DFA

Regular

expressions

History of front ends (cont.)

� 1960s – Application of Chomsky hierarchy

� CFGs for describing programming languages

� Automatically obtain parser – “compiler-compilers”, a.k.a. “parser
generators”

� Regular expressions for lexers

� 1970s – Knuth discovers LR(k) grammars

� Large class of grammars that can be parsed efficiently – yacc

6/8/2009 28

Summary

� Compiler front end analyzes program, produces AST and
symbol table

� Compiler back end produces target machine code or
virtual machine code

� If machine code, program is executed directly, probably with
minimal run-time support by O.S. services

� If virtual machine code, program executed by emulator, probably
with automatic memory management, possibly run-time type-
checking, reflection

6/8/2009 29

