
CS 421 Lecture 3: Even More OCaml

� Announcements

� Lecture outline
� Type declaration in OCaml

� Trees

� Polymorphic types

� Abstract syntax

6/4/2009 1

6/4/2009 2

Announcements

� Reminder: no “live” lectures next Monday & Tuesday
(June 8, 9)
� Pre-recorded lecture videos have been posted on the web site

� Reminder: limited course staff availability this weekend
� Friday – Sunday you are on your own!

� MP2 has been posted
� Due 1:00PM Wednesday, June 10

Brief review

� Tuples
� Fixed-size, heterogeneous collections

� Ex: (“hello”, “cs”, 421)

� Type: string * string * int

� Pairs
� Tuples with two values

� fst, snd functions

� Lists
� Variable-size, homogeneous collections

� Ex: [1; 2; 3; 4; 5]

� Type: int list

� :: - cons, @ - append

� [1; 2] @ (3 :: [4; 5]) = [1; 2; 3; 4; 5]

6/4/2009 3

Brief review

� Pattern matching
� let incr_second_of_3 (x,y,z) = y+1;;

� Type: `a * int * `c -> int

� let sum_pair p = (fst p) + (snd p)

� Type: int * int -> int

� Match expressions
� Pattern matching with choice among alternate options

� let rec is_even lst = match lst with

[] -> true

| x::[] -> false

| x::y::ys -> is_even ys

� Type: `a list -> boolean

6/4/2009 4

Type declaration in OCaml

� First, type expressions are:
� te = int | string | unit | … | te list | te * te * … * te

6/4/2009 5

Type declaration in OCaml

� type t = te
� After this, t is an abbreviation for te

� Similar to “let” syntax for names

� type t = C1 [of te1] | … | Cn [of ten]
� Where C1, …, Cn are constructor names – names that start with a

capital letter

� Values of type t are created by applying C1 to value of
type te1, or C2 to value of type te1, etc.

6/4/2009 6

Example 1

� Enumerated types

type weekday = Mon | Tues | Wed | Thurs | Fri;;

let today = Thurs;;

let weekday_to_string d =

match d with

Mon -> “Monday”

| Tues -> “Tuesday”

| … ;;

� Corresponds to “enum” type in C/C++:
typedef enum {Mon, Tues, Wed, Thurs, Fri} weekday;

6/4/2009 7

Example 2

� Disjoint unions

type shape = Circle of float

| Square of float

| Triangle of float * float * float

let c = Circle 5.7

let t = Triangle (2.0, 3.0, 4.0)

� Note: Triangle 2.0 3.0 4.0 is a type error!

� Corresponds to what is called discriminated union,
tagged union, disjoing union, or variant record.

6/4/2009 8

Example 2 (cont)

� Disjoint unions

let shape_to_string s =

match s with

Circle r -> “circle” ^ (float_to_string r)

| Square t -> “square” ^ (float_to_string t)

| Triangle (s1, s2, s3) ->

“triangle(“ ^ (float_to_string s1) ^ “,” ^

(float_to_string s2) ^ “,” ^

(float_to_string s3) ^ “)”

6/4/2009 9

How to do this in C

struct shape {

int type_of_shape;

union {

struct {float radius;}

struct {float side;}

struct {float side1, side2, side3;} triangle;

} shape_data;

}

void shape_to_string(struct shape s) {

switch (s.type_of_shape) {

case 0: cout << “circle” << s.shape_data.radius; break;

…

}

}

6/4/2009 10

How to do this in Java – method 1

class Shape {

float x; // radius or side

float side2, side3;

int shape_type;

Shape(int i, float f) {

shape_type = i; x = f;

}

Shape(float, float, float) {

shape_type = 2; x = …;

side2 = …; side3 = …;

}

void shape_to_string(Shape s) {

// similar to C

}

}

6/4/2009 11

How to do this in Java – method 2

class Shape {

abstract string shape_to_string();

}

class Circle extends Shape {

float radius;

Circle(float r) {radius = r;}

String shape_to_string(){

return “circle “ + radius;

}

}

class Square extends Shape {

float side;

Square(float s) {side = s;}

String shape_to_string(){

return “square “ + side;

}

}

…

6/4/2009 12

Shape sh;

if (…)

sh = new Circle(…);

else if (…)

sh = new Square(…);

…

Sh.shape_to_string();

Recursive type definitions in OCaml

� In “type t = C of e | …”, e can include t.

type mylist = Empty | Cons of int * mylist

let list1 = Cons (3, Cons (4, Empty))

let rec sum x = match x with

Empty -> 0

| Cons(y,ys) -> y + sum ys

6/4/2009 13

Defining trees

� Binary trees (with integer labels):
type bintree = Empty | BTNode of int * bintree * bintree

let tree1 = BTNode (3,

BTNode (6, Empty, Empty), …));;

� Arbitrary trees (with integer labels):
type tree = Node of int * tree list

let smalltree = Node (3, [])

let bigtree = Node (3, [Node(…), Node(…), …])

6/4/2009 14

Trees

� Example: Create a list of all the integers in a tree.
� Use function flatten : (int list) list -> int list
let rec flatten_tree (Node (n, kids)) =

let rec flatten_list tlis = match tlis with

[] -> []

| (t :: ts) -> flatten_tree t :: flatten_list ts

in n :: flatten (flatten_list kids)

� Syntactic note: flatten_tree Node(…, …)would be
interpreted as (flatten_tree Node)(…, …).
� Since Node has type (int * tree list) -> int list, and the argument

to flatten_tree should be tree, this is a type error.

� Need to write flatten_tree (Node(…, …))

6/4/2009 15

Defining polymorphic types

type ‘a bintree = Empty

| Node of ‘a * ‘a bintree * ‘a bintree

let x = Node(“ben”, Empty, Empty)

let y = Node(4.5, Empty, Empty)

� Although bintree is polymorphic, can still define functions
that apply only to some bintrees (as you can for lists),
e.g.:
let rec sum t = match t with

Empty -> 0

| Node(i,t1,t2) -> I + sum t1 + sum t2

sum: int bintree -> int

6/4/2009 16

Mutually-recursive types

� Similar to “let … and …” syntax
type t = C1 of te1 | … u …

and u = D1 of te1’ | … t …

� Example: abstract syntax

6/4/2009 17

Abstract syntax

� “Deep” structure of program – represents nesting of
fragments within other fragments in the “cleanest” way
possible. Can define as a type in Ocaml, e.g.:

type stmt = Assign of string * expr

| If of expr * stmt * stmt

and expr = Int of int | Var of string

| Plus of expr*expr | Greater of expr*expr

“if (x>0) y=y+1; else z=x;” ->

If(Greater(Var “x”, Int 0),

Assign(“y”, Plus(Var “y”, Int 1)),

Assign(“z”, Var “x”))

6/4/2009 18

Abstract syntax (cont.)

� Example: Function to find all the variables used in an
abstract syntax tree (AST):

let rec vars s = match s with

Assign(x,e) -> x :: evars e

| If(e,s1,s2) -> evars e @ vars s1 @ vars s2

and evars e = match e with

Int i -> []

| Var x -> [x]

| Plus(e1,e2) -> evars e1 @ evars e2

| Greater(e1,e2) -> evars e1 @ evars e2

6/4/2009 19

Abstract syntax (cont.)

� Abstract syntax for a part of Ocaml gives example of
mutually-recursive type definitions:

type decl = Decl of (string * expr) list

and expr = Int of int | Var of string

| Plus of expr * expr

| Let of decl * expr

� E.g., ”let x = 3 and y = 5 in x+y” would have the AST:

Let(Decl[(“x”, Int 3), (“y”, Int 5)],

Plus(Var “x”, Var “y”))

6/4/2009 20

