
CS 421 Lecture 2: More OCaml

� Announcements

� Lecture outline

� Types

� let expressions

� Scoping rules

� Tuples and pattern-matching

� Lists and pattern-matching

6/2/2009 1

6/2/2009 2

Announcements

� Reminder: MP1 due 1:00PM CDT Wednesday

� EWS machines to use: remlnx, gllnx1-40 (.ews.uiuc.edu)

� No “live” lectures next Monday & Tuesday (June 8, 9)

� Pre-recorded lecture videos will be posted on the web site

� Limited course staff availability this weekend

� Friday – Sunday you are on your own!

More OCaml

� Functional language – rely on expression evaluation
rather than statement execution
� Heavy use of recursion

� Type inference

� Dynamic memory allocation

� “Higher-order functions” (will be covered in the second half of
the course)

6/2/2009 3

Types

� Basic: int, string, …

� Function: τ1 → τ2 →…→ τn → τ

� e.g. int→ int→ int

� Later in this class: tuples, lists

6/2/2009 4

Let expressions

� At “top level,” use let to define variables and functions

� Use “let rec” for recursive definitions, e.g.:

let rec sumsqrs m =

if m=0 then 0 else m*m + sumsqrs (m-1);;

6/2/2009 5

Nested let definitions

let f x y = let z = sqrt(x+y)

in x*z;;

let f x y = let f’ a = a ^ “\n”

in f’ (x^y)

let sumsqrs n =

let rec aux m =

if m>n then 0

else m*m + aux (m+1)

in aux 1;;

6/2/2009 6

Further Examples

let z = …

and t = …

in … z … t …

let f x =

let f’ y = …

in let f’’ z = …

in … f’ … f’’ …

6/2/2009 7

Scope

� Set of variables accessible at a given point.

� Let’s look at Java first. Basic rule: closest enclosing
declaration.

class A {

int x=3;

void foo(int x) {

System.out.println(x);

for(int i=0; i<5; i++) {

System.out.println(i);

}

System.out.println(i);

}

}

6/2/2009 8

Scope in OCaml

� Basic rule is the same, e.g.:

let x = 5;;

let f x = let x = 7

in print_int x;;

6/2/2009 9

Scoping rules in OCaml

� Top level:

let x = … ;;

let f a = … ;;

e : let x = e1 in e2

6/2/2009 10

Scope of x?

Scope of f, a?

Scope of e

Scope of e + x

e – all names defined up to this point

Scoping rules in OCaml

e : let f x = e1 in e2

e : let rec f x = e1 in e2

6/2/2009 11

Scope of ??

Scope of ??

Scope of ??

Scope of ??

Why let rec?

� To understand let rec, consider this definition:

let f x = x*x;;

let f x = … f (x-1) … in …

� It is legal if the entire let expression is in the scope of a
definition of f (with the right type).

� In that case, the expression f(x-1) refers to the prior
definition of f – not what we intended!

6/2/2009 12

Mutual recursion

� Does this work?
let rec even n =

if n=0 then true

else odd (n-1)

and odd n =

if n=0 then false

else even(n-1);;

� What’s different here…

6/2/2009 13

� And this?
let rec even n =

let rec odd n =

if n=0 then …

in if n=0 then …

vs. here?

Tuples in OCaml

� Consider structs in C, or Java classes with public fields
and no methods (and just one constructor).

� Example:
class Pr { public int x;

public string x;

public Pr(int x, int s) {

this.x = x; this.s = s;

}

}

� Purpose: put several values together into a single object
that can be passed to, or returned from, methods.

6/2/2009 14

Tuples

� In Java, clients of class Pr do this:
Pr p = new Pr(3, “tim”);

… p.x … p.s …

� Ocaml: create pair with no calss definition needed:
let p = (3,“tim”)

… fst p … snd p …

� Type of p is “int * string”

� Pairs in Ocaml serve same purpose as structs in C, Java

6/2/2009 15

Tuples

� Can have as many values as you wish in a tuple:
(3,“rick”, 4.0) : int * string * float

(“ted”, “bill”) : string * string

let b = (3,(‘a’,4)) : ??

� How would we extract ‘a’ from this?

� However, functions fst and snd work only on pairs. To
define functions on other tuples you need…

6/2/2009 16

Pattern matching

� Two ways to define the same function
let sum p = (fst p) + (snd p)

let sum (a,b) = a+b

� Both define the same function of type int * int → int

� Examples:
let fst_of_3 (x,y,z) = x;;

let incr_fst_of_3 (x,y,z) = x+1;;

6/2/2009 17

“Polymorphic” types

let fst_of_3 (x,y,z) = x;;

‘a * ‘b * ‘c → ‘a

let incr_fst_of_3 (x,y,z) = x+1;;

int * ‘a * ‘b → int

6/2/2009 18

Curried vs. Uncurried functions

let f x y = … x … y …

let g(x,y) = … x … y …

� Wrong usage:
f (1,2)

g 1 2

6/2/2009 19

curried formcurried form

uncurried formuncurried form

“match” expressions

� Another way to use pattern-matching to define functions:
let fst_of_3 x =

match x with

(a,b,c) -> a;;

� But match expressions allow alternates:

let rec fib n =

match n with 0 -> 1

| 1 -> 1

| _ -> fib(n-2)+fib(n-1);;

6/2/2009 20

Lists

� Linked lists in Java:
class List {

int head;

List tail;

static List cons(int x, List y) {

List lst = new List();

lst.head = x;

lst.tail = y;

return lst;

}

}

6/2/2009 21

List lst1 = List.cons(3,null);

lst1.head = 3;

List lst2 = List.cons(4,lst1);

List lst3 = List.cons(5,lst2);

Recursive functions in Java

List lst1 = List.cons(3,null);

lst1.head = 3;

List lst2 = List.cons(4,lst1);

int sum(List L) {

if (L==null)

then return 0;

else return L.head + sum(L.tail);

}

or…

int sum(List L) {

return L==null ? 0 : L.head + sum(L.tail);

}

6/2/2009 22

Recursive functions in Java

� Exercise: define Append(List x, List y)

List Append(List x, List y) {

}

6/2/2009 23

Lists in OCaml

� Built-in data type

� Syntax

� [] – empty list

� [a; b; …; c] – list with elements a, b, …, c

� a :: x – list obtained by putting a on the front of list x (“consing”)

� Examples
let lst1 = [];;

let lst2 = [3];;

let lst1 = lst2;;

let lst3 = 5::4::lst2;;

lst3 = [5;4;3];;

6/2/2009 24

Pattern-matching on lists

let f[a;b] = …

let g(x::xs) = …

let h(x::y::xs) = …

let f x = match x with [] -> …

| y::ys -> …

� Example:

let rec sum x =

match x with [] -> 0

| y::ys -> y + sum ys;;

6/2/2009 25

Append

let rec append x y =

match x with [] -> y

| z::zs -> z :: (append zs y);;

� Compare the Ocaml functions to the Java functions…

6/2/2009 26

Tuples vs. lists

� Tuples are fixed-size, heterogenous collections

� Lists are extendable, homogeneous collections

6/2/2009 27

