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1. Give the types of each of the following Ocaml functions: 
 

(a) let alwaysfour x = 4 

  
(b) let add x y = x + y 

 
(c) let concat x y = x ^ y 

 
(d) let addmult x y = (x + y, x * y) 

 
(e) let rec f x = if x=[] then [] else hd x @ f (tl x) 

 
(f) let rec copy x = if x=[] then [] else hd x :: copy (tl x) 

 

(g) let b (x,y) = x+y 

 
(h) let c (x,y) = x 

   
(i) let d x = match x with (a,b) -> a 

   
(j) let e x = hd x + 1 

   
(k) let f x y = match x with 

       [] -> 0 | a::b -> a+y 

   
(l) let g (a,b) (c,d) = (a+d, b^c) 

    (Recall that ^ is the string concatenation operation.) 

   
(m) let rec h x = match x with 

         [] -> 0 | (a,b)::r -> a + (h r) 
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2. Define the following OCaml functions: 
 

(a) contains : 'a -> 'a list -> bool such that contains x lst returns true if and 
only if lst has x as one of its elements.  Do not use any pre-existing functions.  E.g. 
 contains 4 [3;4;5]  =  true 
 

 
 
 

 
 

(b) evens: ‘a list -> ‘a list returns the 2nd, 4th, etc. elements of its argument.  E.g.  
evens [13;5;9;0;7;8] = [5; 0; 8] 

 

 
 
 

 

 

(c)  Implement the Ocaml function partition: int list -> (int list) list, 

which divides a list into “runs” of the same integer, e.g. 
 partition [9;9;5;6;6;6;3] = [[9;9]; [5]; [6;6;6]; [3]] 

(You may define auxiliary functions, but it is not actually necessary.) 
 

 

 
 
 
 

 
 
 

(d) genlist m n = [m; m+1; ... ; n]  (or [] if m>n) 
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(f) compress: int list -> (int * int) list replaces runs of the same 

integer with a pair giving the count and the number. E.g. 
 

 compress [1;1;5;6;6;6;3] = [(2,1); (1,5); (3,6); (1,3)] 

 

 
 
 
 
 
 
 
 
(g) apply: string -> int list -> int applies the operator described by the 

string argument to the elements in the int list.  The string argument can be either “times” or 
“plus”. 
 

 apply “times” [2;3;4] = 24 

 

Assume the int list argument is non-empty. 
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3.  Suppose we are given the following type definition: 

 
 type btree = Leaf of int | Node of int * btree * btree 
 
 Define the following functions in Ocaml: 

 
(i) preorder: btree -> int list gives the preorder listing of the labels of the tree.  E.g. 
 

let t = node(1, node(2, leaf(4), leaf(5)), node(3, leaf(6), leaf(7))) 

preorder t 

=> [1; 2; 4; 5; 3; 6; 7] 

 

 
 
 
 

(ii) followpath: btree -> boolean list -> int list gives the list of integers in the tree on the path 

described by the boolean list, where “true” means follow the left child and “false” means follow 
the right child.  You may assume that the path described by the boolean list actually exists in the 
tree.  E.g. 
  

 followpath t [true; false] 

      => [1; 2; 5] 

 

 
 
 
 
 
 
 

(iii) height: btree -> int gives the height of a tree, defined as the length of the longest path from 
the root to a leaf node. 

 
 height t;; 
 => 2 
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(iv) balanced: btree -> boolean returns true if for every internal node, the heights of its children 

differ by no more than 1. 
 
 balanced t 
 => true 
      let t1 = node(1, leaf(2), node(3, leaf(6), leaf(7))) 

 => true 

 let t2 = node(1, leaf(2), node(3, leaf(6), node(8, leaf(7), leaf(9))) 

 => false 

 

 
 
 
 
 
 
 
4. Given this Java class definition: 
 

 class List { public int h; public List t; 

         public int hd () { return h; } 

         public List tl () { return t; } 

         public List (int h, List t) {this.h = h; this.t = t; } 

      } 

 

   The empty list is represented by null.  Define the Java function to concatenate two lists: 
 

 public static append (L1, L2) { 
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 } 

 
 
 
5. Given the grammar: 
 

 E  ->  E + T  |  T 

 T  ->  T * P  | P 

 P  ->  id  |  ( E ) 

 

and an Ocaml type for trees: 
 type tree = Node of string * tree list 

 

we can represent concrete syntax trees.  For example, the syntax tree 
 

 

 

would correspond to the term 
 

Node(“E”, [Node(“E”, [Node(“T”, [Node(“P”, [Node(“id”, [])])])]); 

           Node(„+“, []); 

      Node(“T”, [Node(“P”, [Node(“id”, [])])])]) 
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Here is a type for abstract syntax : 

 

 type exp = Id of string | Plus of Exp*Exp | Times of Exp*Exp 

 

Write a function abstract: tree -> exp to transform a concrete syntax tree to an AST. 

 

 

 
 
 
 
 
 
 
 
 

6. An identifier is any sequence of one or more characters 'a' - 'z' that is not a keyword.  Our 
language recognizes identifiers and the keywords 'of' and 'as'.  Give a deterministic finite-state 
machine that recognizes our language.  Each state should be labeled with either S (start state), O 
('of' keyword), A ('as' keyword) or I (identifier). 
 

 

 

 

 



 

 8

7. Write an ocamllex specification for tokens of the following type: 

 
type token = PLUS | MINUS | INT of int 

 
where these represent, respectively, the sequences “+”, “-“, and any string of one or more 
characters '0' - '9'.   (You will want to use the function int_of_string: string → int.) 

 

 
 

 
 
 

 

8. A decimal constant is any sequence of one or more decimal digits (including one starting with 
zero).  A hexadecimal constant has the form 0xW where W is a sequence of one or more 
decimal digits or the letters A-F. 
 

(a) Write a finite-state machine to recognize either decimal or hexadecimal constants.  Label 
each state with either S (start state), D (decimal constant), H (hexadecimal constant), or N 
(neither). 
 

 
 
 
 

 
 
 
 

 
 
 
 

(b) Write a regular expression to recognize either a decimal or hexadecimal constant. 
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9. Define finite-state machines for the following regular expressions over the characters a and b.  

Label each node either S (start), A (accept the string) or R (reject it). 
 
(a)  a(a|b)* 
(b)  aa*b(b|a)* 

(c)  (b|a)*a*ab(b|a)* 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

10.  (a) Write a regular expression for this language:  semicolon-separated lists of a’ and b’s, in 
square brackets.  Examples of strings in the language are [], [a], and [a;b;a;a]. 
 

  
 
(b) Then write a finite-state machine for the language.  Each state should be labeled either as S 
(for the start state), A (for an accepting state), or E (for an error state). 
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11. Write an ocamllex specification for tokens of this type: 

 
    type token = LESSTHAN | LEFTSHIFT | LEFTSHIFTEQ | IDENT of string 

 
where these represent, respectively, the sequence “<”, “<<”, “<<=”, and any string starting with 

a letter and consisting solely of letters and digits.  Your specification should return the next 
token in the input, ignoring any character other than the ones that constitute tokens. 

 

 

 

 

 

 

 

 
 

12. The following grammar has a shift-reduce conflict: 

 
S → B a | b a e 
B → b | c  

 

(a) Show two sentences that lead to the same stack configuration and lookahead symbol, but 
where the correct parsing action in one case is to shift and in the other is to reduce.  Show the 
two parse trees, and the problematic stack configuration, and say whether to shift or reduce in 
either case. 
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(b) Give an equivalent grammar – one with the same language – which does not have the 
conflict. 
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13.  Given the following ambiguous grammar 

 
   E → E . id  |  ! E  |  E [ E ]  |  id 
 
a)  Give a sentence that has two distinct parse trees. Show the parse trees. 

 

  
 
 

 
 
 
 

 
 
 
 

b)  Explain how you might disambiguate the grammar using ocamlyacc precedence and 
associativity declarations. You are free to choose the precedence order and associativity of 
operators, but you must say what declarations you would use and what effect they would have.  
Assume the following declaration: 

 
 %token DOT IDENT BANG LBRACK RBRACK 
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14. Here is a grammar for part of C expressions: 

 
 E ->  id  |  E ? E : E  |  E << E 
 
This grammar is ambiguous.  

 
(a) Give a sentence that has two distinct parse trees, and show those parse trees. 
 

 

 
 
 
 

 
 
 
 

 
 
(b) Explain how you might use ocamlyacc associativity declarations to resolve the conflict 
caused by this ambiguity.  Be specific about what declarations you would use and what their 

effect would be.  (The actual rules for resolving this ambiguity in C or Java do not matter; you 
just need to use the rules to resolve it in some way.) 
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15. Consider this grammar: 

 
 F  ->  id ( A ) 
 A   ->  ε  |  B 
 B  ->  id id  |  B, id id 

 
(a) Show a parse tree for the following sentence:  f (C x, D y) 
 
 

 
 
 
 

 
 
(b) Calculate FIRST(F), FIRST(A), and FIRST(B). 
 

 
 
(c) Why is this not an LL(1) grammar? 
 

 
 
 
 

 
 
 
(e) Transform it to an equivalent LL(1) grammar, and write a recursive descent parser for it.  

Assume the token type is 
 
 type token = Id | LParen | RParen | Comma 
 

and the parseF function has type 
 
 parseF: token list -> (token list) option 
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where option is the type defined as:  type ’a option = Some ’a | None. 
 
 F  ->  id ( A ) 
 A  ->  ε  |  id id B 

 B  ->  ε  |  , id id B 
 

 
 

 



 

 16

16.  Suppose we are given grammar that contains the following rules: 

 
   Expression   →    "do" Stmt "while" "(" Expression ")" 
                 | Stmt ";" Expression 
    | Ident 

 
Assume the token type is 
 

type token = DO | WHILE | LPAREN | RPAREN  

| SCOLON | IDENT of string 

 
the abstract syntax for the Expression non-terminal is 
 

type exp = DoWhile of stmt * exp | Sequence of stmt * exp 

     | Id of string 

 
and you are provided with the parseStmt function of the following type. 

 
parseStmt: token list -> stmt * token list 

 
Implement the parseExp: token list -> exp * token list function.  Ignore error 

cases.  Also, assume that DO and IDENT are not in FIRST(Stmt). 
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17. Consider this grammar: 

 
 E  ->  E + T  |  T 
 T  ->  T * id  |  id 
 

Show a complete shift-reduce parse for the sentence x+y*z.  Include columns Action, Stack, and 
Input, as we did in class.  (Warning: this may take more than one piece of paper, depending 
upon how big you write.  There are 11 steps, counting the final “Accept” step.) 
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18. This grammar is not LR(1).  It has a shift-reduce conflict: 

 
 A  ->  B , $ 
 B  ->  id  |  id , B 
 

Show parse trees for two sentences with the following property: they lead to the same stack 
configuration (meaning, the roots of the trees on the stack are the same), with the same 
lookahead symbol, but in one case the correct action is the shift and in the other it is to reduce.  
Show that stack configuration. 
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19.  Given this grammar: 

 
 E  ->   V ++   |   ++ V   |   V +=  V 
 V  ->   id   |   id [ E ] 
 

(a) Give the parse tree for input x[++i] += y.  
 
 
 

 
 
(b)  Show the shift/reduce parse for that input.  We have shown the first line.  You should show 
every shift and reduce action, indicating the production for reduce actions, until the final Accept 

action.  On the stack, do not give the entire trees, but just the topmost node (as we did in class). 
 
Action   Stack        Input  
Sh      x[++i] += y 

 


