
CS 421—Summer 2008 1 CS421 Summer 2008 Midterm Solutions

CS421 Summer 2008 Midterm Solutions

CS 421 — Programming Languages and Compilers
Summer Term 2008

11:30am–12:45pm, Monday, July 7, 2008

The total time for this exam is 75 minutes.

Print your name and netid below. Also write your name at the bottom of each subsequent page.

Name:

Netid:

• This is a closed-book exam. You are allowed one 3 inch by 5 inch card of notes prepared
by yourself. You may write on both sides of the card. This card is not to be shared. All
other materials, besides pens, pencils, and erasers, are to be put away.

• Do not share anything with other students. Do not talk to other students. Do not look at
another student’s exam. Also, be careful to not expose your exam to easy viewing by other
students. Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, you must document your assump-
tions about what the question means. We are not allowed to answer questions about the exam
in class, and obviously cannot answer these questions for students taking the exam elsewhere.

• Including this cover sheet, rules at the end, and scratch pages, there are 13 pages to the exam.
Please verify that you have all 13 pages. You are allowed to tear off the last three (rules and
scratch) if this makes it easier to take the test.

Question Total points Score

1 10
2 15
3 15
4 8
5 12
6 20
7 20

SUBTOTAL 100

Extra Credit 12

TOTAL 112

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 2 CS421 Summer 2008 Midterm Solutions

1. Short Answer Questions (10 points):

(a) In the following, state TRUE or FALSE for each part separately; each part is 1 point

(write your answers to the left):

A typical dynamically-typed language:

i. assigns types to all expressions at compile time FALSE

ii. allows variables to hold values of different types at runtime TRUE

iii. always detects all potential type errors in a program FALSE

iv. checks that correct types are used in an expression when that expression is executed
TRUE

(b) In the following, state TRUE or FALSE for each part separately; each part is 1 point

(write your answers to the left):

Lexing and parsing:

i. any language construct that can be defined with a regular expression can also be
defined with a context-free grammar TRUE

ii. any language construct that can be defined with a context-free grammar can also
be defined with a regular expression FALSE

iii. an LL(1) parser can be created for any context-free grammar FALSE

iv. LR parsing techniques are strictly more powerful than LL parsing techniques TRUE

(c) (2 points) What value is produced by the following program?

let x = 5 and y = 10

in let y = x + y

in let f x = x + y

in let x = y + x

in f x

35

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 3 CS421 Summer 2008 Midterm Solutions

2. Functional Programming (15 points):

(a) (3 points) Write an OCaml function pairs : ′a → ′b list → (′a ∗′ b) list that, given
an item a and a list of items b, returns a new list, where each b originally in the list is
replaced by the pair (a,b) – e.g., where pairs a [i;j] becomes [(a,i) ; (a,j)].

1 let rec pairs a bs =

2 match bs with

3 | [] -> []

4 | x::xs -> (a,x) :: pairs a xs

(b) (3 points) What is the result of pairs 3 [5; 10; 15]?

1 # pairs 3 [5;10;15];;

2 - : (int * int) list = [(3, 5); (3, 10); (3, 15)]

(c) (3 points) What is the result of pairs 3 [“5”; “10”; “15”]?

1 # pairs 3 ["5";"10";"15"];;

2 - : (int * string) list = [(3, "5"); (3, "10"); (3, "15")]

(d) (3 points) What is the result (English-language description) of pairs 3?

1 # pairs 3 ;;

2 - : ’_a list -> (int * ’_a) list = <fun>

A function that, given a list of items, will return a new list made up of those items paired
with 3 (pairs of the form (3, b), where b is an item from the list).

(e) (3 points) What is the result of evaluating
List.fold left (fun x y − > let(a, b) = y in x + a + b) 0 (pairs 1 [2; 3; 4])?

1 # List.fold_left (fun x y -> let (a,b) = y in x + a + b) 0 (pairs 1 [2;3;4]) ;;

2 - : int = 12

Note: This is the function that sums up all the pairs.

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 4 CS421 Summer 2008 Midterm Solutions

3. Higher-Order Functions and Data Types (15 points):

You are allowed to use all functions in List, such as List.rev, List.fold left, etc – you
do not have to write them yourself.

Given the following OCaml datatype:

type list_tree = Empty | Node of list_tree * list_tree | Leaf of int list;;

(a) (5 points) Write a recursive function fold list tree:

val fold_list_tree : (’a -> ’a -> ’a) -> (int list -> ’a) -> ’a -> list_tree -> ’a = <fun>

that folds a function over a list tree. It should take a function that works over Nodes
(typed between the first set of parens in the type signature for fold list tree), a
function that works over Leafs (typed between the second set of parens in the type
signature for fold list tree), and an identity for Empty, as well as the list tree,
returning the value of the fold computation.

1 # let rec fold_list_tree nf lf i tree =

2 match tree with

3 | Empty -> i

4 | Node (lt,rt) -> nf (fold_list_tree nf lf i lt) (fold_list_tree nf lf i rt)

5 | Leaf il -> lf il

6 val fold_list_tree :

7 (’a -> ’a -> ’a) -> (int list -> ’a) -> ’a -> list_tree -> ’a = <fun>

(b) (5 points) Write a function prod list tree, using fold list tree, that will calcu-
late the product of all the integers stored in the integer lists in the Leaf nodes of the
list tree.

1 # let prod_list_tree lt =

2 fold_list_tree (fun x y -> x * y) (fun il -> List.fold_left (*) 1 il) 1 lt

3 val prod_list_tree : list_tree -> int = <fun>

4 # lt1;;

5 - : list_tree =

6 Node (Node (Leaf [1; 2; 3], Empty),

7 Node (Node (Leaf [4; 5; 6], Leaf [7; 8; 9]), Node (Empty, Leaf [])))

8 # prod_list_tree lt1;;

9 - : int = 362880

(c) (5 points) Write a function flip list tree, using fold list tree, that will switch the
left and right trees in any Node and reverse the lists stored in any Leaf.

1 # let flip_list_tree lt =

2 fold_list_tree (fun x y -> Node (y, x)) (fun il -> Leaf (List.rev il)) Empty lt;;

3 val flip_list_tree : list_tree -> list_tree = <fun>

4 # lt1;;

5 - : list_tree =

6 Node (Node (Leaf [1; 2; 3], Empty),

7 Node (Node (Leaf [4; 5; 6], Leaf [7; 8; 9]), Node (Empty, Leaf [])))

8 # flip_list_tree lt1;;

9 - : list_tree =

10 Node (Node (Node (Leaf [], Empty), Node (Leaf [9; 8; 7], Leaf [6; 5; 4])),

11 Node (Empty, Leaf [3; 2; 1]))

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 5 CS421 Summer 2008 Midterm Solutions

4. Regular Expressions (8 points):

(a) (4 points) Over the alphabet {a, b, c}, give a regular expression generating exactly those
strings over {a, b, c} such that no b occurs after the final c. Remember, this does not
mean the string needs to contain a c!

(a + b)∗ + ((a + b+ c)∗ca∗)

(b) (4 points) Over the alphabet {a, b, c}, give a regular expression generating exactly those
strings over {a, b, c} where any a in the string occurs before any b but after at least one
c (i.e. if there is an a in the string, there is at least one c before it; a mix of a and c

characters can then occur, followed by a mix of b and c characters; if there is no a, c is
allowed but not required.).

(c(c + a)∗(c + b)∗) + (b + c)∗

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 6 CS421 Summer 2008 Midterm Solutions

5. Variables and Scope (12 points): You are given the following program in a standard block-
structured language:

program main;

var x : integer;

var y : integer;

procedure f()

var y : integer;

var z : integer;

begin (* code in procedure f *)

x := 20; y := 30; z := 50;

g();

end (* code in procedure f *)

procedure g()

var x : integer;

begin (* code in procedure g *)

x := 40;

print("The value of x is");

printint(x);

print("The value of y is"); (* POINT *)

printint(y);

x := y + z; (* POINT 2 *)

end (* code in procedure g *)

begin (* main body of program *)

x := 10; y := 15;

f();

end (* main body of program *)

(a) (3 points) Assuming static scope, what is the referencing environment at the point
marked POINT (reminder: this is the set of all variables visible at the marked point,
with a prefix indicating where it was defined, like main.x or f.z)? Assume POINT is
reached by the main program body invoking f, which then invokes g, in this and the
next two problems.

{g.x, main.y}

(b) (3 points) Assuming static scope, what will be printed by the printint(y) statement
(which just outputs the current value of y) on the line after POINT?

15 will be printed, since it is main.y that is printed here.

(c) (3 points) Assuming dynamic scope, what will be printed by the printint(y) statement
on the line after POINT?

30 will be printed, since it is f.y that is printed here.

(d) (3 points) Assume POINT 2 is reached by the main program body invoking f, which then
invokes g. Is this line of the program valid under static scoping? Under dynamic?

This line is NOT valid under static scoping, since z will not be in scope. It IS valid
under dynamic scoping; z will be in scope since it was declared in f and was still in

scope in f when g was invoked.

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 7 CS421 Summer 2008 Midterm Solutions

6. Context-Free Grammars, Derivations, and Parse Trees (20 points): The following ex-
ercises make use of this grammar for arithmetic expressions. Here, the start symbol is E, id
refers to identifiers made up of one lowercase character (a, b, · · · , y, z), and num refers to any
integer:

E → E + T T → T ∗ F F → id

E → E − T T → T/F F → num

E → T T → F F → (E)

(a) (5 points) Show a leftmost derivation for the following term:

x ∗ y + (5 − 3)

E ⇒ E + T ⇒ T + T ⇒ T ∗ F + T ⇒ F ∗ F + T ⇒ x ∗ F + T ⇒ x ∗ y + T ⇒
x ∗ y + F ⇒ x ∗ y + (E) ⇒ x ∗ y + (E − T) ⇒ x ∗ y + (T − T) ⇒ x ∗ y + (F − T) ⇒

x ∗ y + (5 − T) ⇒ x ∗ y + (5 − F) ⇒ x ∗ y + (5 − 3)

(b) (5 points) Show a rightmost derivation for the same term:

E ⇒ E + T ⇒ E + F ⇒ E + (E) ⇒ E + (E − T) ⇒ E + (E − F) ⇒ E + (E − 3) ⇒
E + (T − 3) ⇒ E + (F − 3) ⇒ E + (5 − 3) ⇒ T + (5 − 3) ⇒ T ∗ F + (5 − 3) ⇒

T ∗ y + (5 − 3) ⇒ F ∗ y + (5 − 3) ⇒ x ∗ y + (5 − 3)

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 8 CS421 Summer 2008 Midterm Solutions

E → E + T T → T ∗ F F → id

E → E − T T → T/F F → num

E → T T → F F → (E)

(c) (6 points) Provide a parse tree for the same term, x ∗ y + (5 − 3), using the canonical
derivation. Note here that we don’t need to bother with the derivation order here, since

the grammar is unambiguous – if this grammar were ambiguous, the derivation would

matter, since we could get different parse trees:

E

E + T

T F

T * F (E)

F y E - T

x T F

F 3

5

(d) (2 points, circle the answer) Is there a unique parse tree for this term? True /False If
this were not true, then we would have two different ways of interpreting this term in
the language.

(e) (2 points, circle the answer) Is there a unique leftmost derivation for this term? True /False
If this were not true, we would have an ambiguous grammar.

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 9 CS421 Summer 2008 Midterm Solutions

7. Type Derivations (20 points):
Below is an outline of the type derivation of the following expression:

if b then ((fun x −> x) 4) else (g 5)

Please complete the derivation by giving the results to go in the numbered blanks. Put your
answers next to the corresponding numbers below the type derivation outline. Feel free to
use Γ = {g : int → int, b : bool} when listing the type environment. You can find the type
derivation rules at the back of your exam; feel free to tear that page out for easier reference.

Γ ⊢ b : bool

Γ ∪ (x : int) ⊢ x : int

Γ ⊢ fun x −> x : int → int Γ ⊢ 4 : int

Γ ⊢ (fun x −> x) 4 : int

Γ ⊢ g : int → int Γ ⊢ 5 : int

Γ ⊢ g 5 : int

{g : int → int, b : bool} ⊢ if b then ((fun x −> x) 4) else (g 5) : int

#1 bool

#2 Γ

#3 (fun x −> x) 4

#4 int

#5 Γ

#6 int

#7 Γ

#8 fun x −> x

#9 int → int

#10 Γ

#11 4

#12 Γ

#13 g

#14 int → int

#15 Γ

#16 5

#17 int

#18 Γ ∪ (x : int)

#19 x

#20 int

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 10 CS421 Summer 2008 Midterm Solutions

8. Extra Credit: Unification (12 points):

(a) (10 points) Give a most general unifier for the following unification problem. Lower
case letters (f, g, h, a, b, c) are constants or term constructors: specifically, f is a term
constructors with arity 2, g and h are term constructors with arity 1, and a, b, and c
are constant terms with arity 0. Letters α,β, δ, and γ are variables. Show your work by
listing the operation performed in each step of unification – decompose, orient, delete,
eliminate – and the result of the step. If unification is not possible, work as far as possible
and show where unification fails. If unification does not fail, show the final substitution,
which should be a set of variable to term mappings.

{f(f(α, g(b)), g(β)) = f(γ, g(a)) ; g(α) = g(h(δ)) ; f(h(δ), γ) = f(h(c), γ)}

decompose {f(α, g(b)) = γ ; g(β) = g(a) ; g(α) = g(h(δ)) ; f(h(δ), γ) = f(h(c), γ)}

orient {γ = f(α, g(b)) ; g(β) = g(a) ; g(α) = g(h(δ)) ; f(h(δ), γ) = f(h(c), γ)}

decompose {γ = f(α, g(b)) ; β = a ; g(α) = g(h(δ)) ; f(h(δ), γ) = f(h(c), γ)}

decompose {γ = f(α, g(b)) ; β = a ; α = h(δ) ; f(h(δ), γ) = f(h(c), γ)}

decompose {γ = f(α, g(b)) ; β = a ; α = h(δ) ; h(δ) = h(c) ; γ = γ }

delete {γ = f(α, g(b)) ; β = a ; α = h(δ) ; h(δ) = h(c) }

decompose {γ = f(α, g(b)) ; β = a ; α = h(δ) ; δ = c }

eliminate {γ = f(α, g(b)) ; β = a ; α = h(c) ; δ = c }

eliminate {γ = f(h(c), g(b)) ; β = a ; α = h(c) ; δ = c }

FINAL {γ = f(h(c), g(b)) ; β = a ; α = h(c) ; δ = c }

(b) (2 points) Using the unifier discovered above, apply the substitution and show the final
terms, which should be equalities and which should have no variables. If unification got
stuck above, just write “unification failed” below.

• f(f(α, g(b)), g(β)) = f(γ, g(a)) → f(f(h(c), g(b)), g(a)) = f(f(h(c), g(b)), g(a))

• g(α) = g(h(δ)) → g(h(c)) = g(h(c))

• f(h(δ), γ) = f(h(c), γ) → f(h(c), f(h(c), g(b))) = f(h(c), f(h(c), g(b)))

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 11 CS421 Summer 2008 Midterm Solutions

Rules for type derivations:

Constants

⊢ n : int
(assuming n is an int)

⊢ true : bool

⊢ false : bool

Variables

Γ ⊢ x : τ
if(x : τ) ∈ Γ

Arithmetic Operators

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ⊕ e2 : int
(⊕ ∈ {+,−, ∗, /, · · · })

Relational Operators

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 ∼ e2 : bool
(∼ ∈ {<, >,≤,≥, =, 6=, · · · })

Booleans

Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 && e2 : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 || e2 : bool

Γ ⊢ e1 : bool

Γ ⊢ ! e1 : bool

If
Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Function Abstraction

Γ ∪ [x : τ1] ⊢ e : τ2

Γ ⊢ fun x−>e : τ1 → τ2

Function Application

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Let

Γ ⊢ e1 : τ Γ ∪ [x : τ] ⊢ e2 : τ ′

Γ ⊢ let x = e1 in e2 : τ ′

Letrec

Γ ∪ [x : τ] ⊢ e1 : τ Γ ∪ [x : τ] ⊢ e2 : τ ′

Γ ⊢ let rec x = e1 in e2 : τ ′

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 12 CS421 Summer 2008 Midterm Solutions

Scratch Page 1

University of Illinois at Urbana-Champaign Netid:

CS 421—Summer 2008 13 CS421 Summer 2008 Midterm Solutions

Scratch Page 2

University of Illinois at Urbana-Champaign Netid:

