
CS 421 Midterm 1 Name:____________________________________ 1

CS421 Spring 2009 Midterm 1
Thursday, February 26, 2009

• You have 90 minutes to complete this exam.

• This is a closed-book exam.

• Do not share anything with other students. Do not talk to other students. Do not look at

another student’s exam. Do not expose your exam to easy viewing by other students.

Violation of any of these rules will count as cheating.

• If you believe there is an error, or an ambiguous question, seek clarification from one of

the TAs. You must use a whisper, or write your question out.

• Including this cover sheet, there are 10 pages to the exam. Please verify that you have

all 10 pages.

• Please write your name and NetID in the spaces above, and at the top of every page.

Question Possible points Points earned EC points

1 8

2 8

3 6

4 8

5 8

6 8

7 4

8 8

9 8

10 (EC) 8

11 10

12 6

13 10

14 8

15 (EC) 6

Total 100 + 14

Name:

NetID:

CS 421 Midterm 1 Name:____________________________________ 2

1. (8 pts) Give the types of the following OCaml functions:

a. let f (a,b,c) = a + c f: __int * 'a * int -> int____________________

b. let g (a,b) = b g: __'a * 'b -> 'b___________________________

c. let rec h a b = h: __'a list list -> 'a list -> bool_________________

 if a = [b] then true else h a (tl b)

d. let rec flatten lst = match lst with flatten: ___'a list list -> 'a list_________________

 (x::xs)::ys -> x::(flatten (xs::ys))

 | []::ys -> flatten ys

 | [] -> [];;

2. (8 pts) Consider this function: let sec arg = match arg with (x::y)::z -> y | a::b -> b

What would the output be if sec is applied on the following values? If there is a type mismatch,

write "Error;” if there is a run-time error, write “Run-time error.”

a) [1;2;3] _type error______

b) [[1;2;3];[4;5;6];[7;8;9]] __[2; 3]____________

c) [[1];[2];[3]] __[]_________________

d) [[];[1;2;3]] __[]_________________

3. (6 pts) Given the function

 let rec zero lst = match lst with [] -> [] | x::xs -> (x>0)::zero xs

What is the output of the application zero [8;0;-3;4]? __[true; false; false; true]_________

4. (8 pts) Write a function concat: string list -> string -> string concatenates the strings in its first

argument, separated by the second argument, e.g. concat [“CS”; “421”; “rocks”] “ “ = “CS 421

rocks”. (concat [] = “”.)

let rec concat sl s = match sl with

 [] -> "" | [s'] -> s' | s'::sl' -> s' ^ s ^ concat sl' s;;

CS 421 Midterm 1 Name:____________________________________ 3

5. (8 pts) Write a function f that returns a pair of the number of elements in a list and the last

element. E.g. f [1;2;3;4;3;2] = (6,2). You may not use any library functions (such as length),

and you may assume that the argument is a non-empty list.

let rec f lis = match lis with

 [n] -> (1,n)

 | n::ns -> let (a,b) = f ns

 in (a+1,b)

6. (8 pts) A string list represents an expression in “prefix notation” if it has one of these forms:

either it contains a single number, or it contains the string “+” and two lists in prefix notation all

joined together. Here is an example: [“+”; “3”; “+”; “5”; “6”]. That example evaluates to 14.

Write a function evalprefix: string list -> int * string list. This takes a string list and evaluates the

prefix expression at the start of it, returning the value of that expression and the remainder of

the list. E.g.,

evalprefix [“+”; “3”; “+”; “5”; “6”] = (14, [])

evalprefix [“3”; “+”; “5”; “6”] = (3, [“+”; “5”; “6”])

You can assume all arguments are well-formed in the sense that they start with a prefix

expression. (We will never supply arguments like the last one, but your function will need to

handle them for the recursion to work out.) The function int_of_string converts a string

containing decimal digits to an int.

let rec evalprefix exp = match exp with

 "+" :: exp' -> let (v, exp'') = evalprefix exp'

 in let (v', exp''') = evalprefix exp''

 in (v+v', exp''')

 | n::exp' -> (int_of_string n, exp')

CS 421 Midterm 1 Name:____________________________________ 4

7. (4 pts) A number is a sequence of one or more digits (0 - 9). Give a DFA that recognizes

numbers that are divisible by 5. Label the start state with S, accepting states with A, and

rejecting states with R.

8. (8 pts) An XML node has the following format: < tag attribute=value … attribute=value > (or

/>). Assume tags and attributes consist only of letters, and values are strings beginning and

ending with double quotes and containing only letters. Note that a node can end either with ‘>’

or with ‘/>’. For purposes of this question assume that a single space separates the tag from

the first attribute (if any), a single space separates one attribute from the next, and there are no

other spaces. There can be any number of attributes, including zero (in which case there

should be no spaces).

Write a DFA for XML nodes. Label the start state with S, accepting states with A, and rejecting

states with R. (Note: we are not asking for a specification for XML documents, which have

nesting and can only be specified with a context-free grammar; just for the nodes.)

CS 421 Midterm 1 Name:____________________________________ 5

9. (8 pts) Give an ocamllex specification for XML nodes as described in the previous question.

You may do this as a single regular expression if you like, or as a more complicated

specification. For the purposes of this question, you may be more liberal about spaces if you

like; you can stick to the specification given in question 8, or you can allow more spaces; in

particular, spaces after the tag, after each attribute, and before the closing bracket, are legal in

XML. You can return zero as the value of the node.

let letter = ['A' - 'Z'] | ['a' - 'z']

rule tokenize = parse

 (* Add your regular expression here*)

"<" letter+ (" " letter+ "=\"" letter* "\"")* (">"|"/>") { 0 }

10. (8 pts extra credit) Modify the ocamllex spec from question 9 so that it returns as its value a

pair containing the tag and a list of key-value pairs. That is, it has type string * ((string * string)

list).

let letter = ['A' - 'Z'] | ['a' - 'z']

rule tokenize = parse

 "<" (letter+ as tag) { (tag, attributes lexbuf) }

and attributes = parse

 | " " (letter+ as attr) "=\"" (letter* as value) "\""

 {(attr,value)::attributes lexbuf}

 | (">"|"/>") { [] }

CS 421 Midterm 1 Name:____________________________________ 6

11. (10 pts) This is a grammar for Ocaml int lists:

list → [] | [numbers]

numbers → int | int ; numbers

(a) Explain why this grammar is not LL(1).

For both non-terms, right-hand sides have overlapping FIRST sets.

(b) Here is a top-down (i.e. LL(1)) grammar for the same language:

list → [list2

list2 →] | numbers]

numbers → int numbers2

numbers2 → | ; numbers

Write top-down parsing functions parseList and parseList2, both with type token list → (token

list) option. You can assume that parseNumbers and parseNumbers2, with the same type, are

provided. The set of tokens is defined by this type definition:

type token = Lbracket | Rbracket | Int | Semicolon

(Recall that the option type has definition: type ‘a option = None | Some of ‘a.)

let rec parseList tlis = if hd tlis = Lbracket

 then parseList2 (tl tlis)

 else None

and parseList2 tlis = if hd tlis = Rbracket

 then Some (tl tlis)

 else match parseNumbers tlis with

 None -> None

 | Some tlis' ->

 if hd tlis' = Rbracket

 then Some (tl tlis')

 else None

CS 421 Midterm 1 Name:____________________________________ 7

12. (6 pts) A grammar for arithmetic expressions should have these properties, if possible:

 (a) It should be unambiguous

(b) It should be LL(1)

 (c) It should enforce left-associativity of + and *

 (d) It should enforce precedence of * over +

None of the following grammars satisfies all of these criteria. For each grammar, list all the

properties that it fails to satisfy (using letters a-d):

(1) E → id | E+id | E * id | (E) Fails: ______b, c, d________

(2) E → id | id+E | id*E | (E) Fails: ______b, c, d________

(3) E → T + E | T Fails: ______b, c________

 T → P * T | P

 P → id | (E)

 (4) E → id F | (E) Fails: ______c, d________

 F → | + E | * E

(5) E → E + T | T Fails: ______b________

 T → T * P | P

 P → id | (E)

(6) E → T E’ Fails: _______c_______

 E’ → | + E

 T → P T’

 T’ → | * T

 P → id | (E)

CS 421 Midterm 1 Name:____________________________________ 8

13. (10 pts) For this question, we will use the following grammar:

E → E + T | T

T → id | (T)

(a) Give the parse tree for sentence x+(y)

(b) Based on this parse tree, show the entire shift-reduce parse of this sentence, giving every

shift and reduce action. For each reduce action, say what production is being reduced. For the

stack, show only the top node of the trees (as we did in class). We have filled in the outline of

this parse, showing that the first action is shift, and the last action is accept; the number of rows

is exactly the correct number.

Action Stack Input

Shift x+(y)

Acc E

CS 421 Midterm 1 Name:____________________________________ 9

14. (8 pts) The following grammar is ambiguous.

Exp → Exp or Exp

 | if Exp then Exp else Exp

 | not Exp

 | true

 | false

Two sentences that have more than one parse are “not true or false” (could be interpreted as

“(not true) or false”, or “not (true or false)”), and “if true then false else true or false” (could be

interpreted as “(if true then false else true) or false” or “if true then false else (true or false)”).

Give an ocamlyacc specification that resolves the ambiguity as follows:

• not has higher precedence than or.

• or is left assoc.

• or has higher precedence than an if-expression.

You should include all required declarations. The semantic actions should return abstract

syntax trees of type ast:

 type ast = Or of ast * ast | If of ast * ast * ast | Not of ast | True | False

%{

 type ast = Or of ast * ast | If of ast * ast * ast |

 Not of ast | True | False

%}

%token true false not if then else or

%nonassoc else

%left or

%nonassoc not

%start Exp

%type <ast> Exp

%%

Exp :

 Exp or Exp { Or($1, $3) }

 | if Exp then Exp else Exp { If($2, $4, $6) }

 | not Exp { Not $2 }

 | true { True }

 | false { False }

CS 421 Midterm 1 Name:____________________________________ 10

15. (6 pts Extra credit) No ambiguous grammar is LALR(1) – every ambiguous grammar has at

least one conflict. The following grammars are ambiguous. For each one, do the following: (1)

Find a sentence that has two parse trees. (2) Show the two parse trees. (3) Based on those

parse trees, show a stack/lookahead configuration where there are two different actions – either

a shift and a reduce, or two different reduces – that would lead to the two parse trees shown,

and say which action leads to which tree.

(a) P → a | P P

(b) S → T | U

 T → T c | A

 A → a A b | a b

 U → a U | B

 B → b B c | b c

