CS 421 Final exam Name:

CS421 Spring 2008 Final Exam

Tuesday, May 6, 2008

Name:

NetID:

e You have three hours to complete this exam.
e This is a closed-book exam.

e Do not share anything with other students. Do not talk to other students. Do not look at another
student’s exam. Do not expose your exam to easy viewing by other students. Violation of any of
these rules will count as cheating.

e If you believe there is an error, or an ambiguous question, seek clarification from a proctor.
e Including this cover sheet, there are 19 pages to this exam. Please verify that you have all pages.

e Please write your name and NetID in the spaces above, and also at the top of every page.

Question | Possible Points Graded Question | Possible Points Graded
points earned | by points earned | by

1 6 10 6

2 5 11 8

3 5 12 8

4 6 13 6

5 6 14 8

6 6 15/16 8

7 7 Total 100

8 6 15/16 8

9 9 17 5

EC total 13

CS 421 Final exam Name:

1. (6 pts.) Define the following OCaml functions. Avoid the use of library functions
(including @), except hd and tl.

a. sum:int— intsuchthatifn>0,thensumn=1+ ...+ n,and sum n = 0 otherwise.

b. zip: a list— B list > (o * B) list, such that zip [al;a2;...] [b1;b2;...] =
[(al,b1);(a2,b2);...] Assume the two lists have the same length.

c. unzip: (a* B) list > (a list * B list), the inverse of zip, i.e. unzip [(al,bl);(a2,b2);...] =
([al;a2;...], [bl;b2;...]).

CS 421 Final exam Name:

2. (5 pts) Assume the following abstract syntax:

type stmt = Assign of string * expr
| IT of expr * stmt * stmt
| While of expr * stmt
| Block of stmt list

and expr = Var of string | Const of iInt
| Plus of expr * expr | Less of expr * expr | Not of expr

Write a function trans: stmt — stmt that makes the following transformations:

o iTf (le) then sl else s2 = if (e) then s2 elsesl

o { s} =>s (i.e. a block with a single statement doesn’t need
to be a block)

These transformations should be performed recursively throughout the term — inside the body
of a while, the statements in a block (as well as the block itself), and the true and false branches
of an if (as well as the if itself).

CS 421 Final exam Name:

3. (5 pts) A string is a sequence of characters within double quotes. Further, it may contain
escape sequences; \n, \t, \", and \nnn, where the n's are octal digits (0-7). Write a finite-state
machine for strings (including opening and closing quotes). Note that a backslash must be
followed by n, t, “, or three octal digits, or it is an error. The states should be marked with one
of the letters S (start state), A (accept state), and E (error state).

CS 421 Final exam Name:

4. (6 pts) Given this definition of an abstract syntax for expressions and a "fold" function on
expressions:

type expr = Int of int | Add of expr * expr

let rec fold (f,g) e = match e with

Inti -> F i
| Add(el,e2) -> g (fold (Ff,g) el, fold (Ff,g) e2)

fill in the blanks in the following OCaml session. (Recall that string_of_int is the OCaml
function to convert an int to a string.):

val el = Add(Int 3, Add(Int 4, Int 5))

let evaluate e = fold (,

evaluate el;;
-z int = 12

let prettyprint e = fold

(C ,
) e;;
prettyprint el;;
-2 string = "(3+(4+5))"
let countadds e = fold
C
) e

countadds el;;
-2 Int =2

CS 421 Final exam Name:

5. (6 pts) Consider this grammar:
S — idint
|id id int
| D int

D—- ¢

|D$
This grammar is not ambiguous, but it is not LL(1).

a. Give two reasons why this isn't an LL(1) grammar.

b. Give an LL(1) grammar for this language.

CS 421 Final exam Name:

6. (6 pts) Propositional formulas have variables, constants t and f, and operators A (and) and v

(or):
Fot|f|var|FAF|FVF|(F)

(a) Give a sentence in this grammar that has two parse trees, and show those trees.

(b) Give a stratified grammar that gives precedence to A over v, and gives both left-
associativity.

CS 421 Final exam Name:

7. (7 pts) Fill in the blanks:

a) Inalanguage like Java or C++, local variables have space allocated in the
; primitive values like integers go directly in those locations, but

objects, allocated using "new", go in the

b) Immediate execution of a program, without translation to a more primitive language, is

called

c) Translation of a program into a more primitive language is

d) A chunk of data giving the return address and arguments of a function call, created at the

time of the call, is the

e) An example compiled language is

f) An example interpreted language is

CS 421 Final exam Name:

8. (7 pts) This question concerns the translation of programs to a 3-address intermediate representation.
Recall that we defined the following translation schemes in class:

[S] = instructions to compute statement S
[e]uab fiab = iNstructions to calculate boolean-valued expression e and jump to tlab if it is
true, flab otherwise. (This is called the “short-circuit evaluation” scheme.)

Some languages have multi-level break statements: break n breaks out of n levels of while statements.
(For purposes of this question, ignore switch statements.) In such a language, we need a translation
scheme of the form:

[S]sL, where BL is a list of labels, b,..., b, This is the translation of S, given that it is within n while
statements, and labels b, ..., b, are the labels of the instructions that follow those containing statements,
from innermost to outermost. E.g., "break 1" in S should jump to by, a "break 2" should jump to b,, etc.

For this translation scheme, we can give these translations:

[while (e) S]gL = let wlab, tlab, flab = new labels in
wlab: [e]tab fiab
tlab: [Slaan:eL (where flab::BL is BL with flab added at the front)
JUMP wlab
flab:

[break n]g. = JUMP b,

Such languages also have multi-level continue, where continue n terminates the current iteration of the
n™ enclosing while loop and goes on to the next iteration; continue is equivalent to continue 1. This
requires a translation scheme like this:

[SlsL.cL, where BL is a list of labels by, by, ..., by and CL is a list of labels ¢y, ¢,, ..., ¢, This is the
translation of S to intermediate form, given that it is within n while statements, labels by, by, ..., b, are
the labels of the instructions that follow those containing statements, from innermost to outermost, and

C1, Cy, ..., Cy are the labels beginning the next iteration of those containing loops. That is, a "break 1" in
S should jump to by, and a "continue 1" should jump to c;, etc.

Give the new translations for while, break n, and continue n:

[while (e) SlaLcL =

[break n]gLcL =

[continue N]gLcL =

CS 421 Final exam Name:

9. (9 pts) For this question, recall the definition of fold_right:
let rec fold right ¥ lis accu =
match lis with

[1 —> accu
| h::t -> ¥ h (fold_right ¥ t accu)

Write the following OCaml functions:

(a) Write map using fold_right (not using explicit recursion). (The definition of map is
given in problem 15.)

(b) repeat:int - (o0 —> o) »> a — «, where repeat n f produces a function that applies f n
times.

(c) graph_fun: (a— B) — a list »> (a * B) list, where graph_fun f [x1; x2; ...; xn] = [(X1, f
x1); (x2, fx2); ...]

10

CS 421 Final exam Name:

10. (6 pts) Give the environment after each of the following OCaml definitions. Assume the
execution starts with the environment . We’ve named each environment, and you can use
these names in subsequent environments; we’ve also filled in the first line.

letx=4;;

po: {x — 4}

letfy=funz->x+y+z;

p1:

letx =8;;

p2:

letg=16;;

ps:

letx =g x;;

pa-

11

CS 421 Final exam Name:

11. (8 pts) The expression
e= (fun x -=> let T = fun y -> x+y in T 4)5

evaluates to 9 in an empty environment. We have given part of the derivation tree for the
judgment &, e U 9, in the environment-based dynamic semantics. The rules of this system are
given at the end of this exam. Complete the derivation by filling in the dashed blank lines.
(For space reasons, the proof is broken into sections.)

Define: ee=fun x -> let f = funy -> x+y in f 4 (soe=¢e’ 5)
e’=let f=Ffuny -> x+ty in f 4
e =Ffun y -> x+y
(A)
g,e U @, 515 {x—>5}, e U9
@, elg
(A)
(B)
{x->5ye U __ p.fa 9
{x—>5},¢e” U9
wherep=___
(B) .
p’,XUS p’,yU4
pf U p, 4 U4 p’, x+y U9
p,fa 9
wherep’=_

12

CS 421 Final exam Name:

12. (8 pts) As you know, the expression
let x = el and y = e2 in e

evaluates el and e2 in the same environment (that is, e2 is not in the scope of x). Suppose we
had a different let expression:

let x = el theny = e2 iIn e

in which e2 was in the scope of x. Thatis, "let x=3 then y=x+4 in y" wouldyield 7.

a. Give a dynamic semantics rule for this expression:

p,let x = el theny = e2 inelv

b. Give a type rule for this expression (in the non-polymorphic type system):

I |- 1et x = el then y = e2 in et

The dynamic semantics and type-checking rules are given at the end of this exam.

13

CS 421 Final exam Name:

13. (6 pts) Consider these definitions in OCaml:

let newCounter () =
let cnt = ref O
in (fun n -> cnt = n,
fun) -> (cnt :=
let reset n (a,b) = an
let next (a,b) = b O

Icnt + 1; Icnt)

Recall that the type of () is unit, and the value of an assignment e; := e, is unit.
a. Give the types of newCounter, reset, and next:

type counter =

newCounter: unit — counter

reset:

next:

b. Fill in the blanks in this OCaml session, giving the value returned by the prior expression:

let c1 = newCounter();;
next cl;;

next cl;;

let c2 = cl;;
reset 10 c2;;
next cl;;

14

CS 421 Final exam Name:

14. (8 pts) For this problem, we ask you to construct a type derivation (using the non-
polymorphic type system). Let the type environment I" be

I'= {cons: int — int list — int list, nil: int list }.

Recall that axioms have a line with nothing above it. The axioms and rules of inference for the
system are given at the end of the exam. You are to: (1) Fill in the eight blanks (dashed
underlines). (2) Give the name of the axiom or inference rule being used in each of the seven
deducations.

I - letx =1incons X nil :int list

15

CS 421 Final exam Name:

Do either 15 or 16 (your choice). You may do the other for extra credit.

15. (8 pts) Given these definitions of compose and map:

let compose f g = fun x -> f (g x)
let map f x = if x=[] then [] else F (hd x) :: map ¥ (tl x)

prove that
map £ (map g x) = map (compose f g) x, forall x.
We provide part of the proof, and you are to complete it.
Proof By induction on the length of x.
Base case: x=[]: map ¥ (map g [1)=map £ [1=[]1=map (compose f g) [1]

Inductive case: Assumemap (map g x) = map (compose F g) X, and prove
map f (map g (a::x)) = map (compose f g) (a::x).

map F (map g (a::x))

= if map g (@a::x) =[] (def of map f)
then []
else T (hd (map g (@::x))) :-: map ¥ (tl (map g (a::x)))
= if (ga:: map g x) =11 (def of map Q)
then []

else ¥ (hd (map g (a::x))) :: map ¥ (tl (map g (Aa::x)))

(complete this proof; make sure to justify each step)

16

CS 421 Final exam Name:

16. (8 pts) The following code is similar to the "partition™ portion of quicksort:

i =0; jJ=n-1;
while (i < j) {
if (a[i] <= x)
i = i+l;
else 1T (A[j] >)
J=1J-1;
else {
temp = a[i]
ali] = aljl
a[j] = temp
i = i+l
J =131
}
3

The correctness formula for this statement is:

true { i=0; j=n-1; while ... }3k.(0<k<n-1
A(VM. 0<m<k=am]<x)
A(Vm. k<m<n=a[m]>x))

(a) Give the loop invariant for the loop.

(b) Give a well-founded ordering on the variables that proves the termination of the loop.

17

CS 421 Final exam Name:

17. (Extra credit, 5 pts) Suppose the following C++ class and function were defined:

class FunObj {

public:

virtual int apply (int) = 0;

by
void map (FunObj* f, int* a, int n) {

for (int i=0; i<=n; i++)
) ali] = f->apply(a[il);

a. Define classes decrobj and sqrobj as subclasses of FunObj so that map (new
decrobj(), a, n) decrements each element of a, and map (new sqgrobj(), a, n)
squares each element of a.

b. Define a subclass compose of FunObj

class Compose : public FunObj {

public:
Compose () {

}

int apply () {

}

that composes function objects, so that, for example, map(new Compose(new sqrobj(),
new decrobj()), a, n)changes every element a[i] to (a[i]-1)>.

18

CS 421 Final exam Name:

Dynamic semantics

(constant rule)

p,nin

(variable rule)

p, x ¥ p0oO

(function rule)

p, fun x -> e U <x, e, p>

p,es U<x,e,p> p,ex Iv pxov],elv
(app rule)

p,€1 € UV

p,81Un1 p,ernz
(plus rule)

p,e1+ € U n,+n,

p,e Uv px—>v’],e’ U v
(let rule)

p,let x =e ine’lv

Non-polymorphic type system

(constant rule)

(variable rule)

I - x : I

Ix:t - e:v
(function rule)

I - fun x -> et
I - e 1ot rl- e’z
(app rule)
r - ee:t
rl e:v x:t'] - e’ iz
(let rule)
L - letx =e ine’:x

19

