
Sample questions for final, CS 421, Spring 2008 

These questions cover material that may be on the final, and are at about the level of 
difficulty of the exam questions.  However, there are some differences.  We have not 
debugged them as carefully as the questions on the final; if you have questions, post them 
in the newsgroup and we’ll respond.  We also haven’t formatted them as carefully as we 
will on the exam, and have not left space for the solutions.  Nor is this intended in any way 
to be indicative of the length of the exam.  Lastly, in several cases, we have not provided 
some information that we will provide on the exam (if we ask a similar question); we 
indicate in each question when that is the case. 

1. Define the following OCaml functions.   [Exam: we will provide definitions of fold_right and 
fold_left.]:  

(a)  repeat_until: ('a -> bool) -> ('a -> 'a) -> 'a -> 'a. where repeat_until p f x = x, if p x, or f x if 
 p (f x), or f (f x) if p (f (f x)), etc. 

(b) sift: (‘a -> bool) -> ‘a list -> ‘a list * ‘a list.  sift p lis splits lis into a pair of lists (lis1, lis2), with lis1 
containing those elements of lis that satisfy p and lis2 the others. 

(c) Write sift using fold_right.  Specifically, define sift_base and sift_rec so that 

     fold_right (sift_rec p) lis sift_base   =  sift p lis 

(d) sublist: 'a list -> int -> int -> 'a list. This function, when applied as sublist lst lo hi, returns the elements 
of the list lst that are positioned between lo and hi (indexing from zero).  The function should return 
empty set when lo > hi, or when lo is out of the bounds of the input list; if hi is out of bounds, just return 
the elements from lo to the end of the list. 

(e) Write "map" using "fold_left". 

(f) app_all [f1;f2;…] a = [f1 a; f2 a; …].  Define app_all and say what its type is. 

(g) compose_all [f1;f2;…] a = f1 (f2 (… (fn a)…)).  Define compose_all and say what its type is. 

 

2. Which regular expression differs from the others in its acceptance set?  _______________ 

 a.   a*(b | c)*a* 
 b.   (a | b)*c*a* 
 c.   a*b*c*(b | c)*a* 

Give an example of a string that shows the difference (i.e. either is accepted by the odd regular expression 
and not by the others, or vice versa). 



3.  Consider the “stratified” expression grammar: 

 E  →  T + E   |   T 
      T  →  T * P   |   P 
 P  →  id   |   ( E ) 

(a) Give the parse tree for:  x + (u * v * w) 

(b) What associativity of + is implied by this grammar?  How about *? 

(c) Give a new grammar, based on this one, that includes operator ^ (exponentiation), with higher 
precedence than *.  ^ is right-associative. 

 

4.  Three grammars are given below. For each, write whether the grammar is suitable for LL(1) (i.e. top-
down/recursive descent) parsing. Explain why. 

a) S ::= M + S  
 M ::= M * id | id 

b) E ::= if B then A else A | if B then A 
 A ::= id + A | 1 | 0 
 B ::= true | false 

c) L ::= '(' A 
 A ::= id B | ')' 
 B ::= ',' id B | ')'  

 

5.  This question concerns the translation of program to a 3-address intermediate representation.  We use 
an IR like the one we used in class and on the midterm.  The instructions are: 

 x = y 
 x = n 
 x = &y   (get address of variable y) 
 x = a op b,   where a and b are names or constants, and op is any arithmetic,  

comparison, or boolean operator 
 JUMP label 
 CJUMP  x, Lt, Lf      (jump to Lt if x is true, Lf  otherwise) 
 x = LOADIND y   (get value in location contained in y) 
 ERROR    (return an error) 
   
You may use any of the following translation schemes, which were discussed in class: 
 
[S] = instruction list to compute statement S 
[e] = pair containing instruction list to compute expression e and variable name giving  

location of result 



[e]tlab,flab = instructions to calculate boolean-valued expression e and jump to tlab if it is  
true, flab otherwise.  (This is called the “short-circuit evaluation” scheme.) 

 
Some languages have multi-level break statements: break n breaks out of n levels of switch or while 
statements, e.g. 
 
     while (...) { 
        while (...) { 
           ... 
           break 2;   // this statement jumps to 
           ... 
        } 
     } 
     // here 
 
Thus, a plain "break" is equivalent to "break 1". 
 
The scheme for translation to intermediate form for statements in such a language must know how many 
while or switch statements the statement being translated is within, and the labels of those containing 
statements. Thus, the scheme has the form 
 
[S]BL, where BL is a list of labels, b1, b2, ..., bn.  This represents the translation of S to intermediate form, 
given that it is within n while statements, and labels b1, b2, ..., bn are the labels of the instructions that 
follow those containing statements, from innermost to outermost.  (For purposes of this question, ignore 
switch statements.)  That is, a "break 1" in S should jump to b1, a "break 2" should jump to b2, etc. 
 
Give translation schemes for the while statement (using the short-circuit scheme for the condition) and for 
the break n statement. 
 
  [while (e) S]BL =  
 
  [break n]BL =   
 
 
6.  In APL, define  multmat n which gives an nxn matrix where position i,j has the value i*j. 
 

multmat 4;; 
1 2 3 4 
2 4 6 8 
3 6 9 12 
4 8 12 16 

 
7. Lambda-calculus [Exam: we will include a reminder about the definition of Church 
numerals.] 
 
(a) Encode the following functions in lambda calculus using Church numerals. 
 
    (1)  fun x -> x + 1 
     (2)  fun x -> 2 * x 



 
 (b) Similar to numerals, booleans can be encoded in lambda calculus: 
 
   true = λ x . λ y . x 
   false = λ x . λ y . y 
 
Give the lambda calculus encoding of the following functions based on the definition of true and 
false above. 
 

(1)  AND, where AND true true = true, and otherwise AND x y = false 
(2)  NOT. 

 
8.  Adam and Mary are two students who do implementation in OCaml.  Adam likes quick 
programming.  He wants to save himself from typing extra characters. He defines the following 
function as a shortcut for if-then-else. 
 
   let iF b t e = if b then t else e 
 
Whenever Adam needs to write if B then T else E, he uses iF B T E instead, making his 
programs a lot more concise. 
 
Mary doesn't mind typing a few more characters. She prefers to use if-then-else. She writes the 
following program for a course MP: 
 
 let f x y = y/x 
 in let g a b = if a=0 then b else f a b 
 in g 0 10  
 
Adam writes the same program as 
 
 let f x y = y/x 
 in let g a b = iF (a=0) b (f a b) 
 in g 0 10  
 
Mary's program runs successfully, but Adam's program does not.  Explain Adam's mistake to 
him. 
 
9.   What does this OCaml program evaluate to: 
 

let x = 4 
let y = 6 
let f y = x + y 
let x = 8  
in f(y+x) 

 
a) using static scope?  ___________        b) using dynamic scope?  ___________ 
 



10.  The following function computes binomial coefficients using “dynamic programming.” 
 
let rec mkvec m f = if m=0 then [] else f() :: mkvec (m-1) f;; 
let binom n k = 
   let table = mkvec (n+1) (fun () -> mkvec (k+1) (fun () -> ref (-1))) 
   in let rec binom' n k = 
          let v = nth (nth table n) k 
          in if !v != -1 
                then !v 
                else (if k=0 or k=n 
                      then v := 1 
                      else v := (binom' (n-1) (k-1) + binom' (n-1) k); 
                     !v) 
      in binom' n k;; 
 

The function nth gets the nth element in a list, indexing from zero.  table is a list of lists, in 
effect, a two dimensional array of references, and v is table[n,k]. 
 
(a) What is the type of table? 
(b) What is the type of v? 
(c) Show the value of table after calling binom 3 2; that is, show the values to which each 
element in table refers.  
 

11.  Give the full proof tree for the judgment: 
 
 {y->5}, let f=fun x->x+y in f y ⇓ 10 
 
using the environment-based dynamic semantics (lecture 4/3, slides 10–11)  [Exam: we will give 
the dynamic semantics.] 
 
12.  Some functional languages have a “list comprehension” notation that mimics the 
mathematical “set comprehension” notation.  Specifically, it has the form 
 
 [e | x <- e’] 
 
where e is an expression containing x and e’ is a list-valued expression.  The expression returns a 
list of all the values of e where x takes on all the values in e’.  For example [x*x | x <- [1;2;3]] 
would be the list [1;4;9].  In fact, the list comprehension expression above is exactly equivalent 
to map (fun x -> e) e’. 
 
(a) Give a type rule for list comprehensions: 
 
 
_____________________________________________________________ 

                                       Γ    ⎟-     [ e | x <- e’] : τ list 
 



(b) Actually, list comprehensions have a more general form, namely: 
 
 [e | x <- e’; y <- e’’] 
 
where e contains x and y, and e’’ contains x.  Here, x takes on all values in the list e’, and for 
each such value, y takes on all the values in the list e’’; then the expression returns the list of 
values e for all the pairs of x, y values.  For example, [(x,y) | x <- [1;2;3]; y <- [x+10:x+20]] 
returns [(1,11);(1,21);(2,12);(2,22);(3;13);(3;23)].  Give a type rule for this more general form of 
list comprehension: 
 
 ____________________________________________________________________ 

                                       Γ    ⎟-     [ e | x <- e’; y <- e’’] : τ list 
 
 
13.  Prove that the following functions terminate by providing a well-founded ordering on the 
function arguments such that the arguments to any recursive calls are smaller than the arguments 
to this call.  Assume x is an integer, and n is a natural number.  (Note: part b is by far the hardest 
of these three problems.) 
 
(a)  let rec exp x n = 
   match n with 
              0 -> 1 
          | 1 -> x 
          | _ -> if(n mod 2 = 1) 
              then x * exp x (n-1) 
              else exp (x*x) (n/2);; 
 
 
(b)  let rec exp x n = 
    match n with 
          0 -> 1 
      | 1 -> x 
      | _ -> if(n mod 2 = 1) 
             then exp x (n+1) /x 
             else exp (x*x) (n/2);; 
 
(c) let rec exp x n = 
    match n with 
                      0 -> 1 
       | 1 -> x 
       | _ -> x * exp x (n-1);; 
 



14. Consider the following program P that computes x to the power n. 
 

int a = n-1; 
int x = 1, y = 1; 
while (a > 0){ 
  int t = x; 
  x = y; 
  y = y+t; 
  a = a-1; 
} 

 
The partial correctness judgment for this program is 
 
    n>0 {P} y = fib n 
 
Find the loop invariant.  Keep in mind that the invariant, together with the negation of condition 
(a > 0), must imply the post-condition.  (Recall that fib n = fib (n-1) + fib (n-2) for n>1, and fib n 
= 1 otherwise.) 
 


