Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

4/28/23

https://courses.engr.illinois.edu/cs421/sp2023

i Sequencing

PG Q {Q Gy 4R}
{P} Cq; C2{R}

= Example:
{z=z2&z=z2}x=z2{x=2&z =17z
x=z&z=2z2}y=z{x=z2&Yy =12z}

{z=z&z=z}x=z,y:=z{X=2&Yy =2}

4/28/23

i Sequencing

PG Q {Q Gy 4R}
{P} Cq; C2{R}

= Example:
{z=2&z=2}x=2{x=2&Z= Z}
x=2z2&z=2}y =z{x=z&y =2z}
{z=z&z=z}x=z,y:=z{X=2&Yy =2}

4/28/23

i Postcondition Weakening

PIC{Q'} Q DQ
{P} C{Q}

Example:
{z=z&z=z}x=z,y:=z{X=2&Yy =2}
(X=z&y=2z)=2> (X=Y)
{z=2&z=z}x:=z,y:=z{X=YV}

4/28/23

i Rule of Consequence

PP {PIC{Q} Q 2Q
{P} C{Q}

= Logically equivalent to the combination of
Precondition Strengthening and
Postcondition Weakening

sUsesP=2>P and Q =2 Q

4/28/23

i If Then Else

{P and B} C,{Q} {P and (not B)} C, {Q}

{P} if B then C, else C, fi {Q}
= Example: Want
{y=aj}
if x <0 theny:=y-x else y.:= y+x fi
{y=a+|x(}

Suffices to show:

(1) {y=a&x<0} y:=y-x {y=a+|x|} and

(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

4/28/23

i {y=a&x<0} y:=y-x {y=a+|x|}

(3) (y=a&x<0)=>» y-x=a+|x|
(2) {y-x=at|x|} y:=y-x {y=a+|x|}

(1) {y=a&x<0} y:=y-x {y=a+|x|}

(1) Reduces to (2) and (3) by
Precondition Strengthening

(2) Follows from assignment axiom

(3) Because x<0 = x| = -x

4/28/23

i {y=a¬(x<0)} y:=y+x {y=a+|x|}

(6) (y=a¬(x<0))=>(y+x=a+|x|)

(9) {ytx=at|x|} y:=y+x {y=a+t|x}}
(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

(4) Reduces to (5) and (6) by
Precondition Strengthening

(5) Follows from assignment axiom

(6) Because not(x<0) =» |x| = x

4/28/23 9

i If then else

(1) {y=a&x<0}y:=y-x{y=a+|x|}
(4) {y=a¬(x<0)}y:=y+x{y=a+|x|}

{y=a}
If X <0 then y:= y-x else y.:= y+x
{y=a+|x[}

By the if _then_else rule

4/28/23

10

i While

= \We need a rule to be able to make
assertions about while loops.

= Inference rule because we can only draw
conclusions if we know something about
the body

= Let’ s start with:

{ ? } C { ? }
{ ?)} while Bdo Cod { P}

4/28/23 11

i While

= The loop may never be executed, so if
we want P to hold after, it had better
hold before, so let’ s try:

{ 2 } C { 7 }
{ P} while Bdo Cod { P}

4/28/23 12

i While

= If all we know is P when we enter the
while loop, then we all we know when
we enter the body is (P and B)

s If we need to know P when we finish
the while loop, we had better know it
when we finish the loop body:

{Pand B} C {P}
{P} while B do Cod {P}

4/28/23

13

i While

= We can strengthen the previous rule
because we also know that when the
loop is finished, not B also holds

= Final while rule:

{PandB} C {P}
{P }while B do Cod {P andnot B}

4/28/23 14

iWhiIe
{PandB} C {P}

{P}while B do Cod {PandnotB}

= P satisfying this rule is called a loop
Invariant because it must hold
before and after the each iteration
of the loop

4/28/23

16

i While

= While rule generally needs to be
used together with precondition
strengthening and postcondition
weakening

= There is NO algorithm for
computing the correct P; it requires
intuition and an understanding of
why the program works

4/28/23

17

i Example

= Let us prove
{x>=0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x-1) od
{fact = al}

4/28/23

18

i Example

s \We need to find a condition P that is true
both before and after the loop is executed,
and such that

(P and not x > 0) = (fact = a!)

4/28/23

19

i Example

s First attempt:
{a! = fact * (x!)}

= Motivation:
= What we want to compute: al
= \What we have computed: fact

which is the sequential product of a down
through (x + 1)

= What we still need to compute: x!

4/28/23

20

i Example

By post-condition weakening suffices to show
1. {x>=0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x-1) od
{al = fact * (x!) and not (x > 0)}
and
2. {a! =fact * (x!) and not (x > 0) } =» {fact = al}

4/28/23 21

i Problem

2. {a!l =fact * (x!) and not (x > 0)} =» {fact = al}
= Don’t know thisif x <0

= Need to know that x = 0 when loop
terminates

= Need a new loop invariant
= [ryaddingx>=0
= [hen will have x = 0 when loop is done

4/28/23 22

i Example

Second try, combine the two:
P ={a! =fact * (x!) and x >=0}
Again, suffices to show
1. {x>=0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x-1) od
{P and not x > 0}
and
2. {P and not x > 0} =» {fact = al}

4/28/23 23

i Example

s For 2, we need
{a! =fact * (x!) and x >=0 and not (x > 0)} =>»
{fact = al}
But {x >=0 and not (x > 0)} =» {x = 0} so
fact * (x!) = fact * (0!) = fact
Therefore

{a! =fact * (x!) and x >=0 and not (x > 0)} =>»
{fact = al}

4/28/23 24

i Example

= For 1, by the sequencing rule it suffices to
show

3. {x>=0 and x = a}

fact := 1
{a! =fact * (x!) and x >=0}
And

4. {a! =fact * (x!) and x >=0}
while x > 0 do
(fact .= fact * x; x ;= x-1) od
{al = fact * (x!) and x >=0 and not (x > 0)}

4/28/23 25

i Example

= Suffices to show that
{a! = fact * (x!) and x >= 0}

holds before the while loop is entered and
that if

{(al =fact * (x!)) and x >= 0 and x > 0}

holds before we execute the body of the
loop, then

{(a! =fact * (x!)) and x >= 0}
holds after we execute the body

4/28/23 27

i Example

By the assignment rule, we have

{al =1~ (x!)and x >= 0}

fact .= 1
{a! =fact * (x!) and x >= 0}
Therefore, to show (3), by
precondition strengthening, it suffices
to show
(x>=0and x=a) =
(al =17* (x!) and x >= 0)

4/28/23

28

i Example

(x>=0and x=a) =
(al =17* (x!) and x >= 0)
holds because x = a = x! = al

Have that {a! = fact * (x!) and x >= 0}
holds at the start of the while loop

4/28/23 20

i Example

To show (4):

{a! = fact * (x!) and x >=0}

while x > 0 do

(fact :=fact * x; x := x-1)

od

{al = fact * (x!) and x >=0 and not (x > 0)}
we need to show that

{(a! =fact * (x!)) and x >= 0}

IS a loop Invariant

4/28/23

30

i Example

We need to show:
{(a! =fact * (x!)) and x >= 0 and x > 0}
(fact=fact*x; x:=x—-1)
{(a! =fact * (x!)) and x >= 0}

We will use assignment rule,
sequencing rule and precondition
strengthening

4/28/23 31

i Example

By the assignment rule, we have
{(@! =fact * ((x-1)!)) and x — 1 >= 0}
X:=X—-1
{(a! =fact * (x!)) and x >= 0}
By the sequencing rule, it suffices to show
{(@l =fact * (x!)) and x >= 0 and x > 0}
fact = fact * x
{(@! =fact * ((x-1)!)) and x — 1 >= 0}

4/28/23 32

i Example

By the assignment rule, we have that
{(a! = (fact * x) * ((x-1)!)) and x — 1 >= 0}
fact = fact * x

{(@! =fact * ((x-1)!)) and x — 1 >= 0}
By Precondition strengthening, it suffices
to show that
((al=fact* (x!)) andx>=0and x>0) =
((a! = (fact * x) * ((x-1)1)) and x — 1 >= 0)

4/28/23 33

i Example

However
fact * x * (x — 1)! = fact * (x!)
and (x>0)=>x-1>=0
since X iIs an integer,so
{(@!'=fact* (x!)) and x>=0and x> 0} =>»
{(a! = (fact * x) * ((x-1)!)) and x — 1 >= 0}

4/28/23

34

i Example

Therefore, by precondition strengthening
{(al =fact * (x!)) and x >= 0 and x > 0}
fact = fact * x
{(@! =fact * ((x-1)!)) and x — 1 >= 0}

This finishes the proof

4/28/23

35

