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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}
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Sequencing

{P} C1 {Q}     {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}
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Postcondition Weakening

{P} C {Q’}    Q’è Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z) è (x = y)
{z = z & z = z} x := z; y := z {x = y}
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Rule of Consequence

P è P’ {P’} C {Q’}    Q’è Q
{P} C {Q}

n Logically equivalent to the combination of 
Precondition Strengthening and 
Postcondition Weakening

n Uses P è P’ and  Q’ è Q
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If Then Else

{P and B} C1 {Q}   {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

n Example:  Want
{y=a}

if x < 0 then y:= y-x else y:= y+x fi
{y=a+|x|}

Suffices to show:
(1) {y=a&x<0}  y:=y-x  {y=a+|x|}  and      
(4) {y=a&not(x<0)}  y:=y+x  {y=a+|x|}
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(3)        (y=a&x<0)è y-x=a+|x|
(2)      {y-x=a+|x|}  y:=y-x   {y=a+|x|}
(1)      {y=a&x<0}  y:=y-x  {y=a+|x|}

(1) Reduces to (2) and (3) by  
Precondition Strengthening

(2) Follows from assignment axiom
(3) Because x<0 è |x| = -x

{y=a&x<0}  y:=y-x  {y=a+|x|}
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(6)     (y=a&not(x<0))è(y+x=a+|x|)
(5) {y+x=a+|x|}  y:=y+x   {y=a+|x}}
(4)   {y=a&not(x<0)}  y:=y+x  {y=a+|x|}

(4) Reduces to (5) and (6) by 
Precondition Strengthening

(5) Follows from assignment axiom
(6) Because not(x<0) è |x| = x

{y=a&not(x<0)} y:=y+x {y=a+|x|}
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If then else

(1)          {y=a&x<0}y:=y-x{y=a+|x|}         .
(4)      {y=a&not(x<0)}y:=y+x{y=a+|x|}     .

{y=a} 
if x < 0 then y:= y-x else y:= y+x

{y=a+|x|}

By the if_then_else rule
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While

n We need a rule to be able to make 
assertions about while loops.
n Inference rule because we can only draw 

conclusions if we know something about 
the body

n Let’s start with:
{     ?     }     C    {      ?     }

{      ?      }   while   B  do C od {  P  }
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While

n The loop may never be executed, so if 
we want P to hold after, it had better 
hold before, so let’s try:

{     ?     }     C    {      ?     }
{  P  }  while   B  do C od {  P  }
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While

n If all we know is  P when we enter the 
while loop, then we all we know when 
we enter the body is   (P and  B)

n If we need to know   P when we finish 
the while loop, we had better know it 
when we finish the loop body:

{ P and B}  C  { P }
{ P }  while B  do C od { P }
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While

n We can strengthen the previous rule 
because we also know that when the 
loop is finished,  not B also holds

n Final while rule:

{ P and B }  C  { P }
{ P } while  B  do C od { P and not B }
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While

{ P and B }  C  { P }
{ P } while  B  do C od { P and not B }

n P satisfying this rule is called a loop 
invariant because it must hold 
before and after the each iteration 
of the loop
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While

n While rule generally needs to be 
used together with precondition 
strengthening and postcondition 
weakening

n There is NO algorithm for 
computing the correct P; it requires 
intuition and an understanding of 
why the program works

4/28/23 18

Example

n Let us prove 
{x>= 0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od
{fact = a!}
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Example

n We need to find a condition P that is true 
both before and after the loop is executed, 
and such that

(P and not x > 0) è (fact = a!)
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Example

n First attempt:
{a! = fact * (x!)}

n Motivation:
n What we want to compute:  a!
n What we have computed:  fact 

which is the sequential product of  a down 
through (x + 1)

n What we still need to compute:  x!
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Example

By post-condition weakening suffices to show
1. {x>=0 and x = a} 

fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od
{a! = fact * (x!) and not (x > 0)}

and
2. {a! = fact * (x!) and not (x > 0) } è {fact = a!}
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Problem

2.  {a! = fact * (x!) and not (x > 0)} è {fact = a!}
n Don’t know this if x < 0
n Need to know that x = 0 when loop 

terminates
n Need a new loop invariant
n Try adding x >= 0
n Then will have x = 0 when loop is done
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Example

Second try, combine the two:
P = {a! = fact * (x!) and x >=0}

Again,  suffices to show
1. {x>=0 and x = a} 

fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od
{P and not x > 0}

and
2. {P and not x > 0} è {fact = a!}
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Example

n For 2, we need
{a! = fact * (x!) and x >=0 and not (x > 0)} è

{fact = a!}
But {x >=0 and not (x > 0)} è {x = 0} so 

fact * (x!) = fact * (0!) = fact
Therefore
{a! = fact * (x!) and x >=0 and not (x > 0)} è

{fact = a!}
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Example

n For 1, by the sequencing rule it suffices to 
show

3. {x>=0 and x = a} 
fact := 1

{a! = fact * (x!) and x >=0 }
And
4.  {a! = fact * (x!) and x >=0}

while x > 0 do 
(fact := fact * x; x := x –1) od

{a! = fact * (x!) and x >=0 and not (x > 0)}
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Example

n Suffices to show that
{a! = fact * (x!) and x >= 0} 

holds before the while loop is entered and 
that if

{(a! = fact * (x!)) and x >= 0 and x > 0}
holds before we execute the body of the 
loop, then

{(a! = fact * (x!)) and x >= 0}
holds after we execute the body
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Example

By the assignment rule, we have
{a! = 1 * (x!) and x >= 0}

fact := 1
{a! = fact * (x!) and x >= 0}

Therefore, to show (3), by 
precondition strengthening, it suffices 
to show

(x>= 0 and x = a) è
(a! = 1 * (x!) and x >= 0)
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Example

(x>= 0 and x = a) è
(a! = 1 * (x!) and x >= 0)

holds because x = a è x! = a!

Have that {a! = fact * (x!) and x >= 0}
holds at the start of the while loop
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Example

To show (4): 
{a! = fact * (x!) and x >=0}
while x > 0 do 
(fact := fact * x; x := x –1)
od
{a! = fact * (x!) and x >=0 and not (x > 0)}

we need to show that 
{(a! = fact * (x!)) and x >= 0}

is a loop invariant
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Example

We need to show:
{(a! = fact * (x!)) and x >= 0 and x > 0}

( fact = fact * x; x := x – 1 )
{(a! = fact * (x!)) and x >= 0}

We will use assignment rule, 
sequencing rule and precondition 
strengthening
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Example

By the assignment rule, we have 
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

x := x – 1
{(a! = fact * (x!)) and x >= 0}

By the sequencing rule, it suffices to show
{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}
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Example

By the assignment rule, we have that
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

By Precondition strengthening, it suffices 
to show that 
((a! = fact * (x!)) and x >= 0 and x > 0) è
((a! = (fact * x) * ((x-1)!)) and x – 1 >= 0)
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Example

However
fact * x * (x – 1)! = fact * (x!)

and              (x > 0) è x – 1 >= 0
since x is an integer,so

{(a! = fact * (x!)) and x >= 0 and x > 0} è
{(a! = (fact * x) * ((x-1)!)) and x – 1 >= 0}
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Example

Therefore, by precondition strengthening
{(a! = fact * (x!)) and x >= 0 and x > 0}

fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

This finishes the proof


