
4/26/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

Programming Languages & Compilers

4/26/23

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

2

III : Language Semantics

4/26/23 3

Axiomatic Semantics

n Also called Floyd-Hoare Logic
n Based on formal logic (first order

predicate calculus)
n Axiomatic Semantics is a logical system

built from axioms and inference rules
n Mainly suited to simple imperative

programming languages

4/26/23 4

Axiomatic Semantics

n Used to formally prove a property (post-
condition) of the state (the values of the
program variables) after the execution
of program, assuming another property
(pre-condition) of the state holds before
execution

4/26/23 5

Axiomatic Semantics

n Goal: Derive statements of form
{P} C {Q}

n P , Q logical statements about state,
P precondition, Q postcondition,
C program

n Example: {x = 1} x := x + 1 {x = 2}

4/26/23 6

Axiomatic Semantics

n Approach: For each type of language
statement, give an axiom or inference rule
stating how to derive assertions of form

{P} C {Q}
where C is a statement of that type

n Compose axioms and inference rules to build
proofs for complex programs

4/26/23 7

Axiomatic Semantics

n An expression {P} C {Q} is a partial
correctness statement

n For total correctness must also prove
that C terminates (i.e. doesn’t run
forever)
n Written: [P] C [Q]

n Will only consider partial correctness
here

4/26/23 8

Language

n We will give rules for simple imperative
language

<command>
::= <variable> := <term>

| <command>; … ;<command>
| if <statement> then <command> else
<command> fi
| while <statement> do <command> od

n Could add more features, like for-loops

4/26/23 9

Substitution

n Notation: P[e/v] (sometimes P[v <- e])

n Meaning: Replace every v in P by e

n Example:
(x + 2) [y-1/x] = ((y – 1) + 2)

4/26/23 10

The Assignment Rule

{P [e/x] } x := e {P}
Example:

{ ? } x := y {x = 2}

4/26/23 11

The Assignment Rule

{P [e/x] } x := e {P}
Example:

{ _ = 2 } x := y { x = 2}

4/26/23 12

The Assignment Rule

{P [e/x] } x := e {P}
Example:

{ y = 2 } x := y { x = 2}

4/26/23 13

The Assignment Rule

{P [e/x] } x := e {P}

Examples:

{y = 2} x := y {x = 2}

{y = 2} x := 2 {y = x}

{x + 1 = n + 1} x := x + 1 {x = n + 1}

{2 = 2} x := 2 {x = 2}

4/26/23 14

The Assignment Rule – Your Turn

n What is the weakest precondition of
x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}
x := x + y

{x + y = w – x}

?

4/26/23 15

The Assignment Rule – Your Turn

n What is the weakest precondition of
x := x + y {x + y = w – x}?

{(x + y) + y = w – (x + y)}
x := x + y

{x + y = w – x}

4/26/23 16

1725 minutes

4/26/23 17

Precondition Strengthening

P è P’ {P’} C {Q}
{P} C {Q}

n Meaning: If we can show that P
implies P’ (Pè P’) and we can
show that {P’} C {Q}, then we know
that {P} C {Q}

n P is stronger than P’ means P è
P’

4/26/23 18

Precondition Strengthening

n Examples:
x = 3 è x < 7 {x < 7} x := x + 3 {x < 10}

{x = 3} x := x + 3 {x < 10}

True è 2 = 2 {2 = 2} x:= 2 {x = 2}
{True} x:= 2 {x = 2}

x=n è x+1=n+1 {x+1=n+1} x:=x+1 {x=n+1}
{x=n} x:=x+1 {x=n+1}

4/26/23 19

Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

4/26/23 20

Which Inferences Are Correct?

{x > 0 & x < 5} x := x * x {x < 25}
{x = 3} x := x * x {x < 25}

{x = 3} x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

{x * x < 25 } x := x * x {x < 25}
{x > 0 & x < 5} x := x * x {x < 25}

4/26/23 21

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

4/26/23 22

Sequencing

{P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R}

n Example:
{z = z & z = z} x := z {x = z & z = z}
{x = z & z = z} y := z {x = z & y = z}

{z = z & z = z} x := z; y := z {x = z & y = z}

4/26/23 23

Postcondition Weakening

{P} C {Q’} Q’è Q
{P} C {Q}

Example:
{z = z & z = z} x := z; y := z {x = z & y = z}

(x = z & y = z) è (x = y)
{z = z & z = z} x := z; y := z {x = y}

4/26/23 24

Rule of Consequence

P è P’ {P’} C {Q’} Q’è Q
{P} C {Q}

n Logically equivalent to the combination of
Precondition Strengthening and
Postcondition Weakening

n Uses P è P’ and Q’ è Q

4/26/23 25

1750 minutes

4/26/23 26

If Then Else

{P and B} C1 {Q} {P and (not B)} C2 {Q}
{P} if B then C1 else C2 fi {Q}

n Example: Want
{y=a}

if x < 0 then y:= y-x else y:= y+x fi
{y=a+|x|}

Suffices to show:
(1) {y=a&x<0} y:=y-x {y=a+|x|} and
(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

4/26/23 27

(3) (y=a&x<0)è y-x=a+|x|
(2) {y-x=a+|x|} y:=y-x {y=a+|x|}
(1) {y=a&x<0} y:=y-x {y=a+|x|}

(1) Reduces to (2) and (3) by
Precondition Strengthening

(2) Follows from assignment axiom
(3) Because x<0 è |x| = -x

{y=a&x<0} y:=y-x {y=a+|x|}

4/26/23 28

(6) (y=a¬(x<0))è(y+x=a+|x|)
(5) {y+x=a+|x|} y:=y+x {y=a+|x}}
(4) {y=a¬(x<0)} y:=y+x {y=a+|x|}

(4) Reduces to (5) and (6) by
Precondition Strengthening

(5) Follows from assignment axiom
(6) Because not(x<0) è |x| = x

{y=a¬(x<0)} y:=y+x {y=a+|x|}

4/26/23 29

If then else

(1) {y=a&x<0}y:=y-x{y=a+|x|} .
(4) {y=a¬(x<0)}y:=y+x{y=a+|x|} .

{y=a}
if x < 0 then y:= y-x else y:= y+x

{y=a+|x|}

By the if_then_else rule

4/26/23 30

While

n We need a rule to be able to make
assertions about while loops.
n Inference rule because we can only draw

conclusions if we know something about
the body

n Let’s start with:
{ ? } C { ? }

{ ? } while B do C od { P }

4/26/23 31

While

n The loop may never be executed, so if
we want P to hold after, it had better
hold before, so let’s try:

{ ? } C { ? }
{ P } while B do C od { P }

4/26/23 32

While

n If all we know is P when we enter the
while loop, then we all we know when
we enter the body is (P and B)

n If we need to know P when we finish
the while loop, we had better know it
when we finish the loop body:

{ P and B} C { P }
{ P } while B do C od { P }

4/26/23 33

While

n We can strengthen the previous rule
because we also know that when the
loop is finished, not B also holds

n Final while rule:

{ P and B } C { P }
{ P } while B do C od { P and not B }

