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i Untyped A-Calculus

= How do you compute with the
A-calculus?
= Roughly speaking, by substitution:

= (AX.e) e, =*e; e,/ X]

= * Modulo all kinds of subtleties to avoid
free variable capture
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i Transition Semantics for \-Calculus

E->FE"
EE -->F  F
= Application (version 1 - Lazy Evaluation)
(M x. E) E--> HE /X]
= Application (version 2 - Eager Evaluation)
E -->F"’
(AXx.E)E -->0x.EE"’

(A x. E) V--> A V/X]

V - variable or abstraction (value)
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i How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete

« Can express any sequential computation

s Problems:

= How to express basic data: booleans,
iIntegers, etc?

= How to express recursion?

= Constants, if then_else, etc, are
conveniences; can be added as syntactic
sugar
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i Typed vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT

Turing Complete (no recursion)
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i o Conversion

1.

3.

o.-conversion:

2. A X. exp -—a--> A Y. (exp [y/X])
Provided that

1. Y is not free in exp

>. No free occurrence of X in exp
becomes bound in exp when
replaced by y

AX. X (LY. XY)=-%X-> V. V(A V.Y Y)
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i o Conversion Non-Examples

1. Error: y is not free in term second

kx.xy><> LY.VY
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y

X LY. XV D> LY. AV
XA Y. XY, > LY. A Y. VY,
exp exply/x]

But AX.(Ay.y)X-—-0—->AY.(AYy.Y)Y
And A y. (A Y. Y)Y —o--> A X. (A V. Y) X
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i Congruence

= Let ~ be a relation on lambda
terms. ~ is a congruence if

= it is an equivalence relation

s If e; ~ e, then
= (ee;) ~(egy)and (ee) ~ (e, €)
s A X e1N7\,X. ez
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i o Equivalence

= o equivalence is the smallest
congruence containing o
conversion

= One usually treats a-equivalent
terms as equal - i.e. use «o
equivalence classes of terms
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i Example

Show: A X. (A Y. Yy X) X ~a~ A Y. (A X. XY)Y
s AX.(AY.YyX)X—-0—->AZ. (AY.YZ)Z SO
AXc(AY. Y X)X ~a~ Az (AY. Y Z)Z
s (AY.yZ)--a—-> (A X.XZ) SO
(AYy.y Z) ~a~ (A X.XZ) SO
(AY.yZz)zZ~a~ (A X.XZ)ZSO
rMz.(AY.YZ)Z~o~v Az (MX.X2)Z
s AZ.(AX.X2)Z-a—->AY. (AX.XY)Y SO
MZ.(AX.XZ)Z~oa~ LY. (AX.XY)Y
B AX.(AY. Y X)X ~oa~v A Y. (AX. XY)Y
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i Substitution

= Defined on oa-equivalence classes of
terms

= P [N / x] means replace every free
occurrence of x in P by N

» P called redex; N called residue

= Provided that no variable free in P
becomes bound in P [N / x]

= Rename bound variables in P to avoid
capturing free variables of N
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i Substitution

IX[N/X:=N

sY[N/X]=vyify=X
= (e &) [N/ x]=((e;[N/x])(e;[N/x]))

= (A X. e) N/ x

= (A X. €)
=LYy.(e[N/x])

provided y # x and y not free in N
=« Rename y in redex if necessary
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i Example

(Ay.yz)[(AX.XYy) /2] =7
= Problems?

= Z in redex in scope of y binding
= Y free in the residue

s (AY.V2)[(AX.XY)/ z] ——o-->
(AWWwW2z2)[(AX.XY)/z] =
AW. W (A X XY)
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i Example

= Only replace free occurrences
s(AY.YZ(Az.2) [(AX. X))/ Z] =
LY.V (AX X) (A 2z 2)

Not
LY.y (A X X)(Az (A X X))
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i B reduction

= B Rule: (AX.P)N--p-->P[N/X]

= Essence of computation in the lambda
calculus

= Usually defined on oa-equivalence
classes of terms
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i Example

s(AMZ.(AX.XY)Z2) (LY. Y 2Z)
-—B--> (A X. XY) (A Y. Y Z)
B> (LY. YZ)y-B->yZ

m (A X, X X) (A X XX)
--B--> (A X. X X) (A X. X X)
--B--> (A X. X X) (A X. X X) —-p--> ...

4/21/23

19



i o. B Equivalence

= O B equivalence is the smallest
congruence containing o equivalence
and B reduction

= A term is in normal form if no subterm
IS o0 equivalent to a term that can be 3
reduced

= Hard fact (Church-Rosser): if e, and e,

are off-equivalent and both are normal
forms, then they are o equivalent
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i Order of Evaluation

= Not all terms reduce to normal forms

= Not all reduction strategies will produce
a normal form if one exists
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i Lazy evaluation:

= Always reduce the left-most application
in @ top-most series of applications (i.e.
Do not perform reduction inside an
abstraction)

= Stop when term is not an application, or
left-most application is not an
application of an abstraction to a term
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i Example 1

s (AZ.(AX. X)) (LY. YY) (Ly.yY))
= Lazy evaluation:

= Reduce the left-most application:

s(AzZ. A% X)) (LY. YY) (Ry.yy))
--B--> (A X. X)
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i Eager evaluation

= (Eagerly) reduce left of top application
to an abstraction

= Then (eagerly) reduce argument
= Then B-reduce the application
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i Example 1

= (A Z. (A X X)Ly YY) (hy.yy))
= Eager evaluation:

= Reduce the rator of the top-most application to
an abstraction: Done.

= Reduce the argument:

= (A Z. (A X X)Ly YY) (hy.yy))
B> (A Z. (A X X)L Y. YY) (LY. yY))
B> (A Z. (A X X)X Y. YY) Ly yy))..
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i Example 2

s (AX.XX)((AY. VYY) (A z 2))
= Lazy evaluation:

AX. X X)(AY.YY) Az 2)) —-B-->
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i Example 2

s (AX XX)(AY. YY) (A z 2)
= Lazy evaluation:

O x4 DXL y. v Y) (0 2. 2)) —-p-->
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i Example 2

s (AXXX)(AY. VYY) (A z 2))
= Lazy evaluation:

(A XX XA Y. YY) (A z. 2)) --B-->

((Ay.y y)z2)((Ly.y y) (rz2)
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e 2

s (AXXX)((AY. VYY) Az 2))
= Lazy evaluation:

(AX. X X)(AY.YY) Az 2)) —-B-->
(Ly.y y)Ozz2)|(Ly.y y) (hz2)
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i Example 2

s (AXXX)(AY. YY) (A z 2)
= Lazy evaluation:

(A X.x X )(A Y. YY)z 2)--p->
(Ay.MM) rz.2)(Ay.y Y) (hz 2))
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i Example 2

s (AX. XX)((AY.VY) (A 2z 2))
= Lazy evaluation:

(AX. X X)(AY.YY) (A 2z 2)) -—-B-->
(Ay.YllyD Az 2)) (Ay.y v) (hz 2))
B> (A z. zJ[Az. Z))((Ly.y v) (A z. 2))
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i Example 2

s (AX. XX)((AY.VY) (A 2z 2))
= Lazy evaluation:

(AX. X X)(AY.YY) (A 2z 2))--B-->
(Ay.yy)2rz2z)((Ay.y v)(hz 2))
B-->(((Az.z2) Lz 2)) (A y.y YV) (rz 2))
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i Example 2

s (AX. XX)((AY.VY) (A 2z 2))
= Lazy evaluation:

(AX. X X)(AY.YY) (A 2z 2))--B-->
(Ay.y y)(rz.2))((Ay.y y) Az 2))
~B--> (A z.[z]) (A z. 2)) (L y. y V) (A z. 2))
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i Example 2

s (AX. XX)((AY.VY) (A 2z 2))
= Lazy evaluation:

(AX.x xX)(ry.yy) (hz z)) --B-->
(Ay.yy)(rz.z)) (Ay.y v) (A z 2))

B> (L z.[2]) A z. ) (L y.y V) (2 2))
-B-->[rz.z) (A y.y y) (A z 2))
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i Example 2

s (AX.XX)(AY. YY) (A z 2)
= Lazy evaluation:

AX. X X)(AY.YY) (\z 2))--B-->

(Ay.yy)rz2)((Ay. Yy Y)(rz2)

—p-->((Az.z)(rz.2)((AYy. Y V) (hz 2))
—-B--> (A z.[Z]) (L y. Yy ¥) (r 2z 2)) --B-->
(AYy.Yy Y)Rrz2)
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i Example 2

s (AX. XX)((AY.VY) (A 2z 2))

Lazy evaluation:

(A X X X)L y.yy) (A 2z 2)) --B-->

Ay y y) Oz Z))) (hy.y y) (h 2z 2))

33 (Lz.z2) (A z. 2) (L Y.y v) (A z 2))

- (A z. 2| (A y.y ¥v) (A z 2)) --B-->

\l_(ky.y y)(hz )]
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i Example 2

s (AX. XX)((AY.VY) (A 2z 2))

Lazy evaluation:

(A X X X)L y.yy) (A 2z 2)) --B-->

Ay y y) Oz Z))) (hy.y y) (h 2z 2))

33 (Lz.z2) (A z. 2) (L Y.y v) (A z 2))

- (A z. 2| (A y.y ¥v) (A z 2)) --B-->

\l_(xy.y y)(Az. z)MB~ Az zZ
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o2

s (AX. XX)((AY.VY) (A z 2))
= Eager evaluation:

(A x. x X)|((Ly.yy) (A z. 2))=B-->

(Ax.x X)[((rz.2) (N z z))|5-[3-->
(A x. x X)|[(A z. 2)|]--B-—->
(Lz.2)(ALz2.2) —-B—> AZ.Z
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i Untyped A-Calculus

= Only three kinds of expressions:
« Variables: x, y, z, w, ...
« Abstraction: A X. e
(Function creation)
= Application: e, e,
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i How to Represent (Free) Data Structures
(First Pass - Enumeration Types)

= Suppose t is a type with /7 constructors:
C,...,C, (no arguments)

= Represent each term as an abstraction:

mlet & — A X .. X X

= Think: you give me what to return in
each case (think match statement) and
I'll return the case for the /th
constructor
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i How to Represent Booleans

= bool = True | False
B frue > A X. A X, Xy =, AX.AY. X
m False 5> A X A XX =, AX.AY.Y
= Notation

= Will write

A Xy ... Xq. €fOr A Xy, ... AX. €

e e, ..e, for(..(e;er)...e,)

4/21/23
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i Functions over Enumeration Types

s Write a “match” function
= match e with C, -> x4

C,-> X,
— A X{ ... X €. € X{...X,

= Think: give me what to do in each case and
give me a case, and I’ Il apply that case
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i Functions over Enumeration Types

s type ¢ =C|...|C,
= match e with C, -> x4

C,-> X,
m matcht = A Xy ... X, €. € X1...X,

= @ = expression (single constructor)
X; is returned if e = C,

4/21/23

47



i match for Booleans

= bool = True | False
= [rue — A Xy X5, X4
[ Fa|Se —> }L Xl Xz. XZ

= match,,,= ?

4/21/23

= AXY.X
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i match for Booleans

= bool = True | False
s frue > A X X. Xy =, AXY.X
mFalse 5 A X X.% =, AXY.Y

= match,, ;= A Xy X; €. € X; X,
= AXYyb.bXxy

4/21/23
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i How to Write Functions over Booleans

= if b then x, else x, —»
= if_then_else b x; X, = b Xy X;
= if_then_else=X b Xx; X, .bX; X,
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i How to Write Functions over Booleans

= Alternately:
= if bthen x, else x, =
match b with True -> x, | False -> x, —
match,,, X; Xo b =
(AXy X b.bXyX )Xy X b=DbX;X
s if then else
= A b X; X5. (Mmatch,, X; X, b)
=Ab X X. (A Xy X D. DXy X )X XD
= A b X; X5. b Xy X5

4/21/23
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i Example:

not b

= match b with True -> False | False -> True
— (match,,,) False True b
=(AX;Xb.bXy X )(AXY.yY)(AXYy.X)b
=b (A XY.y)AXY.X)

snot=Ab.b(AxYy.y)AXY.X)
= Try and, or
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& and
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i How to Represent (Free) Data Structures
(Second Pass - Union Types)

= Suppose t is a type with n constructors:
type T — C] t]] ers t]/(‘ |C/7 tn_z ees tnm/

= Represent each term as an abstraction:

s Gl by A X X X by o 8

] C;%)L t/'] pns t/],X]. Xn . Xi t/'] pns t/]/

= Think: you need to give each constructor
its arguments fisrt
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i How to Represent Pairs

= Pair has one constructor (comma) that takes
two arguments

= type (o,B)pair = (,) a B
m(a,b)->Ax.xab

m(_,_)—->Xabx.xab
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i Functions over Union Types

s Write a “match” function
| matCh e Wlth C] YI le '> f]. y1 yml

Cn Yi-Ymn =2 1:n Y1 - Ymn
[ matChT —> 7\~ fl fn e. e fl-"fn

= Think: give me a function for each case and
give me a case, and I' |l apply that case to
the appropriate fucntion with the data in
that case
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i Functions over Pairs

= matchp,; A fp.pf

= fst p = match p with (x,y) -> X
= fst - & p. match,, (A X Y. X)
=(Lfp.pHH(AXY.X)=2ap.p(AXY.X

= snd >Ap.p(AXY.Y)
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i How to Represent (Free) Data Structures
(Third Pass - Recursive Types)

= Suppose 7t is a type with n constructors:
type T — C] t_” t]kl |C/7 tn] tnm/
= Suppose ¢,: t (ie. is recursive)

= In place of a value ¢, have afunction to compute
the recursive value r X ... X,

n Gl b= Xy oo Xno X g oee (FpXg oo Xp) o &

8 G Mgl b Xg oo Xn X Gig e (FpXq o X0) oo G
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i How to Represent Natural Numbers

=nNat =Sucnat |0
aSuc =1 nfx. f(nfx)
sSucn=Afx.f(nfx)
=0 =LFX X

= Such representation called
Church Numerals
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i Some Church Numerals

s Suc0=(MAnfx.f(nfx) (Afx. x)->
AMEXF((Lf X x)fx)-->
AMEX (A X X)X)—->AfX fX

Apply a function to its argument once
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i Some Church Numerals

= Suc(Suc0) =(Anfx.f(nfx)) (Suc0) -->
(Anfx.f(nfx)) (Afx fx)-->

AMEX F((L X fX)fXx)-—->

AMEX F (L X fFX)X))-—->Afx f(fx)

Apply a function twice

Ingeneraln = A fx. f( ... (Fx)...) with n
applications of f
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i Primitive Recursive Functions
= Write a “fold” function
= foldfy; ... f, = match e

with C; Yy oo Y1 -> F1 Y1 o Yima

Ciyy ...l .Yin => fryy .. (fold £y oo £ 1) o Ymn

Cn Yi - Yo =2 1:n Y1 - Ymn

. foldr —> Af,..f e ef..f

= Match in non recursive case a degenerate version
of fold

4/21/23 62



i Primitive Recursion over Nat

a fold f z n=
= match n with 0 -> z
= | Suc m -> f (fold f z m)

sfold=Afzn.nfz

= iS_zero n = fold (A r. False) True n
s = (AfX. FPXx) (A r. False) True

= = ((A r. False) ") True

= =if n = 0 then True else False
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i Adding Church Numerals

an=Afx.f"x and m=Afx. fmx

+m = )\ fx. f{O+mx
Afx.fr(fmx)=xfx.nf(mfx)

--T—zxnmfx.nf(mfx)

= Subtraction is harder
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i Multiplying Church Numerals

LMfx.f"x and m=Afx. fmx

fx. (f"*mMx =Afx. (fMhx
(mf) x

x=anmfx. n(mf)x
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i Predecessor

= let pred_aux n =

match n with 0 -> (0,0)

| Suc m

-> (Suc(fst(pred_aux m)), fst(pred_aux m)
= fold (A r. (Suc(fstr), fst r)) (0,0) n

= pred = A n.snd (pred_aux n) n =
A n. snd (fold (A r.(Suc(fst r), fst r)) (0,0) n)
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i Recursion

= Want a A-term Y such that for all term
R we have

= Y needs to have replication to
“remember” a copy of R

Y =AY. (A X y(X X)) (A X. Y(X X))
= Y R=(AX. R(XX)) (A X. R(X X))
= R ((A X. R(X X)) (A X. R(X X)))

= Notice: Requires lazy evaluation
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i Factorial

s letF=Afn.ifn=0thenlelsen*f(n-1)
YF3=F(YF)3

=if3=0thenlelse3* ((YF)(3-1))
=3*(YF)2=3*(FYF)?2)
=3*(if2=0thenlelse2 *(YF)(2-1))
=3*R2*(YPFQ)=3*R2*(FYF)1))=..
=3*2*1*(if 0 =0then 1 else 0*(Y F)(0 -1))
=3*2*1*1=6
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i Y in OCaml

#letrecy f=f(yf);;

valy : ('a -> 'a) -> 'a = <fun>

# let mk fact =
funfn->ifn=0then1elsen* f(n-1);;

val mk_fact : (int -> int) -> int -> int = <fun>

# vy mk_fact;;

Stack overflow during evaluation (looping
recursion?).
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i Eager Eval Y in Ocaml

#letrecyfx="f(yf)x;;

valy: ((la->'b)->'a->'b)->'a->'b
= <fun>

# vy mk_fact;;

- 1 int -> int = <fun>

# vy mk _fact 5;;

-:int =120

= Use recursion to get recursion
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i Some Other Combinators

= For your general exposure

sl =AX.X

s K=AX. A VY. X

s K« = AX.AY. Y

s S=AX.AY.AZ.XZ(Yy2)
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End of Extra Material



