Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

4/19/23

https://courses.engr.illinois.edu/cs421/sp2023

i Simple Imperative Programming Language

n [e Identifiers
s N e Numerals

m Bii=true | false | B& B| Bor Bl not B | £
<E|E=E

s EE=N/IT/E+E/EXE/E-E/-F
mCii=skip| GC| IT::=E
| if Bthen Celse Cfi | while Bdo Cod

4/19/23 2

i Transitions for Expressions

= Numerals are values

= Boolean values = {true, false}

= Identifiers: (I,m) --> (nm(1), m)

4/19/23

i Boolean Operations:

= Operators: (short-circuit)
(false & B, m) --> (false,m) (B, m)--> (B, m)
(true & B m)--> (Bm) (B& B, m)-->(B"& B, m)

(true or B, m) --> (true,m) (B, m) --> (B”, m)
(false or B, m) --> (B.m) (Bor B, m)--> (B”or B ,m)

(not true, m) --> (false,m) (B, m)--> (B, m)
(not false, m) --> (true,m) (not B, m) --> (not B', m)

4/19/23 4

i Relations

(E, m)-->(E"",m)
(E~E’, m)--> (E' ~E,m)

(E, m) --> (E',m)
(V~E m)-->(V~E',m)

(U~ V, m) --> (true,m) or (false, m)
depending on whether U ~ IV'holds or not

4/19/23 5

i Arithmetic Expressions

(E, m) --> (E"",m)
(Eop E, m)--> (E" " op E',m)

(E, m)--> (E',m)
(Vop E, m)--> (Vop E',m)

(Uop V, m) -->(N,m) where Nis the
specmed value for Uop V

4/19/23

i Commands - in English

= Skip means done evaluating

= When evaluating an assignment, evaluate the
expression first

= If the expression being assigned is already a
value, update the memory with the new value for
the identifier

= When evaluating a sequence, work on the first
command in the sequence first

= If the first command evaluates to a new memory
(ie completes), evaluate remainder with new
memory

4/19/23 7

i Commands

(skip, m) --> m

(E,m) --> (E',m)
(L:=Em) --> (L:=E",m)

(L:=V,m) --> m[] <-- V]

(Gm) —-> (Cm") (&m) > m-
(&;C, m) > (C7;C,m) (GC, m)-->(C;m’)

4/19/23

i If Then Else Command - in English

= If the boolean guard in an if_then_else
iSs true, then evaluate the first branch

= If it is false, evaluate the second branch

= If the boolean guard is not a value,
then start by evaluating it first.

4/19/23 10

i If Then Else Command

(if true then Celse C’ fi, m) --> (C, m)
(if false then Celse C’ fi, m) --> (C’, m)
(Bm) --> (B,m)

(if Bthen Celse C’ fi, m)
--> (if B’ then Celse C’ fi, m)

4/19/23 11

i What should while transition to?

(while Bdo Cod, m) - ?

4/19/23 12

i Wrong! BAD

(B, m) > (B, m)

(while B do C od, m) -=> (while B’ do C od, m)

4/19/23 13

i While Command

(while Bdo Cod, m) -->
(if Bthen C while Bdo Cod else skip fi, m)

In English: Expand a While into a test of the boolean
guard, with the true case being to do the body
and then try the while loop again, and the false
case being to stop.

4/19/23 14

i Example Evaluation

= First step:

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

4/19/23

15

i Example Evaluation

= First step:

(X >5,{x->7})->"7?

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

4/19/23

16

i Example Evaluation

= First step:

(XI{X -> 7}) --> (71 {X -> 7})
(X >5,{x->7})->"7?

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

4/19/23

17

i Example Evaluation

= First step:

(XI{X -> 7}) --> (71 {X -> 7})
(X >5,{x->7})-->(7>5,{x->7})

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> ?

4/19/23

18

i Example Evaluation

= First step:
(X,{X->7})-->(7,{x->7})
(X >5,{x->7})-->(7>5,{x->7})
(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})
--> (if 7> 5theny:=2 + 3 elsey:=3 + 4 fi,
{X->7})

4/19/23 19

i Example Evaluation

= Second Step:
(7 >5, {x->7})--> (true, {x->7})
(if 7> 5theny:=2 + 3 else y:=3 + 4 fi,
{X->7})
--> (if true then y:=2 + 3 else y:=3 + 4 fi,
{X->7})

= Third Step:
(if true then y:=2 + 3 elsey:=3 + 4 fi, {x -> 7})
-->(y:=243, {X->7})

4/19/23 20

i Example Evaluation

= Fourth Step:
(243, {x-> 7}) --> (5, {x -> 7})

(y:=2+43, {x->7}) --> (y:=5, {x->7})

. Fifth Step:
(y:=5, {x->7}) -->{y->5,x->7}

4/19/23

21

i Example Evaluation

. Bottom Line:

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> (if 7 > 5theny:=2 + 3 elsey:=3 + 4 fi,
{X->7})

-->(if true then y:=2 + 3 else y:=3 + 4 fi,
{X->7})
-->(y:=24+3, {X->7})

--> (y:=5, {x->7}) --> {y -> 5, x-> 7}

4/19/23 22

i Transition Semantics Evaluation

= A sequence of steps with trees of
justification for each step

U U Uy

(Cyymy) --> (C,my) --> (C5,m3) --> ... -->m

s Let -->* be the transitive closure of -->

= e, the smallest transitive relation
containing -->

4/19/23 23

i Programming Languages & Compilers

lll : Language Semantics

Lambda
Calculus

Axiomatic
Semantics

Operational

Semantics

4/19/23 30

i Lambda Calculus - Motivation

= Aim is to capture the essence of
functions, function applications, and
evaluation

= A—calculus is a theory of computation

= ' The Lambda Calculus: Its Syntax and
Semantics”. H. P. Barendregt. North
Holland, 1984

4/19/23

31

i Lambda Calculus - Motivation

s All sequential programs may be viewed
as functions from input (initial state and
input values) to output (resulting state
and output values).

= A-Calculus is a mathematical formalism
of functions and functional
computations

= Two flavors: typed and untyped

4/19/23 32

i Untyped A-Calculus

= Only three kinds of
expressions:

«Variables: x, y, z, w, ...

=« Abstraction: A X. e
(Function creation, think fun x -> e)

« Application: e, e,

" Parenthesized expression: (e)

4/19/23

33

i Untyped A-Calculus Grammar

= Formal BNF Grammar:

= <expression> ::= <variable>
<abstraction>
<application>
(<expression>)

= <abstraction>

::= A<variable>.<expression>
= <application>
.= <expression> <expression>

4/19/23 34

i Untyped A-Calculus Terminology

s Occurrence: a location of a subterm in a
term

= Variable binding: A x. e is a binding of x in e

s Bound occurrence: all occurrences of x in
A X, e

s Free occurrence: one that is not bound

= Scope of binding: in A X. e, all occurrences in
e not in a subterm of the form A x. e’ (same

X)
= Free variables: all variables having free
occurrences In a term

4/19/23 35

i Example

= Label occurrences and scope:

(AX.YAY.Y (A X XY) X)X
12 34 56789

4/19/23

36

i Example

= Label occurrences and scope:

B fre /\ free
!

(kx.yky./\y(kx/.\xy)x)ﬁ
12 34 56789

4/19/23

37

i Untyped A-Calculus

= How do you compute with the
A-calculus?
= Roughly speaking, by substitution:

= (AX.e) e, =*e; e,/ X]

= * Modulo all kinds of subtleties to avoid
free variable capture

4/19/23

39

i Transition Semantics for \-Calculus

E->FE"
EE -->F F
= Application (version 1 - Lazy Evaluation)
(M x. E) E--> HE /X]
= Application (version 2 - Eager Evaluation)
E -->F"’
(AXx.E)E -->0x.EE"’

(A x. E) V--> A V/X]

V - variable or abstraction (value)

4/19/23 40

i How Powerful is the Untyped A-Calculus?

= The untyped A-calculus is Turing
Complete

« Can express any sequential computation

s Problems:

= How to express basic data: booleans,
iIntegers, etc?

= How to express recursion?

= Constants, if then_else, etc, are
conveniences; can be added as syntactic
sugar

4/19/23 41

i Typed vs Untyped A-Calculus

= The pure \-calculus has no notion of
type: (f f) is a legal expression

= Types restrict which applications are
valid

= Types are not syntactic sugar! They
disallow some terms

= Simply typed A-calculus is less powerful
than the untyped A-Calculus: NOT

Turing Complete (no recursion)

4/19/23 42

i o Conversion

1.

3.

o.-conversion:

2. A X. exp -—a--> A Y. (exp [y/X])
Provided that

1. Y is not free in exp

>. No free occurrence of X in exp
becomes bound in exp when
replaced by y

AX. X (LY. XY)=-%X-> V. V(A V.Y Y)

4/19/23 44

i o Conversion Non-Examples

1. Error: y is not free in term second

kx.xy><> LY.VY
2. Error: free occurrence of x becomes
bound in wrong way when replaced by y

X LY. XV D> LY. AV
XA Y. XY, > LY. A Y. VY,
exp exply/x]

But AX.(Ay.y)X-—-0—->AY.(AYy.Y)Y
And A y. (A Y. Y)Y —o--> A X. (A V. Y) X

4/19/23 45

