
4/10/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

4/10/23 2

Example - cont

n Problem: shift or reduce?

n You can shift-shift-reduce-reduce or
reduce-shift-shift-reduce

n Shift first - right associative
n Reduce first- left associative

4/10/23 3

Reduce - Reduce Conflicts

n Problem: can’t decide between two
different rules to reduce by

n Symptom: RHS of one production
suffix of another

n Requires examining grammar and
rewriting it

n Harder to solve than shift-reduce errors

4/10/23 4

Example

n S ::= A | aB A ::= abc B ::= bc

! abc shift
a ! bc shift
ab ! c shift
abc !

n Problem: reduce by B ::= bc then by S
::= aB, or by A::= abc then S::A?

Disambiguating a Grammar

n Given ambiguous grammar G, with start
symbol S, find a grammar G’ with same start
symbol, such that

language of G = language of G’
n Not always possible
n No algorithm in general

4/10/23 5

Disambiguating a Grammar

n Idea: Each non-terminal represents all
strings having some property

n Identify these properties (often in terms of
things that can’t happen)

n Use these properties to inductively
guarantee every string in language has a
unique parse

4/10/23 6

Steps to Grammar Disambiguation

n Identify the rules and a smallest use that display
ambiguity

n Decide which parse to keep; why should others be
thrown out?

n What syntactic restrictions on subexpressions are needed
to throw out the bad (while keeping the good)?

n Add a new non-terminal and rules to describe this set of
restricted subexpressions (called stratifying, or
refactoring)

n Characterize each non-terminal by a language
invariant

n Replace old rules to use new non-terminals
n Rinse and repeat

4/10/23 7 10/4/07 8

Predence in Grammar

n Higher precedence translates to longer
derivation chain

n Example:
<exp> ::= 0 | 1 | <exp> + <exp>

| <exp> * <exp>
n Becomes

<exp> ::= <mult_exp>
| <exp> + <mult_exp>

<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::= 0 | 1

n <mult_exp> = maybe mult, not plus

More Disambiguating Grammars

n M ::= M * M | (M) | M ++ | 6
n Ambiguous because of associativity of *
n Because of conflict between * and ++:
n 6 * 6 ++ 6 * 6 ++

M M
M ++ M * M

M * M 6 M ++
6 6 6

4/10/23 9

M ::= M * M | (M) | M ++ | 6

n How to disambiguate?
n Choose associativity for *
n Choose precedence between * and ++
n Four possibilities
n Three - four different approaches
n Some easier than others
n Will do --- all?

4/10/23 10

M ::= M * M | (M) | M ++ | 6

n Think about 6 * 6 ++ * 6 * 6 ++

4/10/23 11

M ::= M * M | (M) | M ++ | 6

n Think about 6 * 6 ++ * 6 * 6 ++
n Let’s start with observations
n If * binds less tightly than ++, then no *

can be the immediate subtree to a ++.
n We would need a language for things that don’t

parse as *
n If * binds more tightly than ++, then …
n The right subtree to * can’t be a ++
n But the left can!

n Need different languages of the left and right
4/10/23 12

M ::= M * M | (M) | M ++ | 6

n Think about 6 * 6 ++ * 6 * 6 ++
n ++ higher prec than *

n P == maybe ++, not *
n A == not *, not ++

n A ::= (M) | 6
n P ::= A | P ++
n M ::= M * P | P * assoc left OR
n M ::= P * M | P * assoc right

4/10/23 13

M ::= M * M | (M) | M ++ | 6

n * higher prec than ++, * assoc left
n 6 * 6 ++ * 6 ++ * 6

n M :: = M++ | S
n S == maybe *, not ++
n M++ == is ++, not *
n A ::= (M) | 6
n S ::= S * A | M++ * A | A

4/10/23 14

M ::= M * M | (M) | M ++ | 6

n * higher prec than ++, * assoc left
n 6 * 6 ++ * 6 ++ * 6

n M :: = M++ | S
n S == maybe *, not ++
n M++ == is ++, not *
n A ::= (M) | 6
n S ::= S * A | M++ * A | A
n S ::= M * A | A

4/10/23 15

M ::= M * M | (M) | M ++ | 6

n * higher prec than ++, * assoc left
n 6 * 6 ++ * 6 ++ * 6

n M :: = M++ | M * A | A
n S == maybe *, not ++
n M++ == is ++, not *
n A ::= (M) | 6
n S ::= S * A | M++ * A | A
n S ::= M * A | A

4/10/23 16

M ::= M * M | (M) | M ++ | 6

n * higher prec than ++, * assoc left
n 6 * 6 ++ * 6 ++ * 6

n M :: = M++ | M * A | A
n A ::= (M) | 6

n M++ == must be ++
n M * A == must be *
n A == not ++ or *

4/10/23 17

M ::= M * M | (M) | M ++ | 6

n * higher prec than ++, * assoc right
n 6 * 6 ++ * 6 ++ * 6

n M :: = M++ | S
n S == maybe *, not ++
n S ::= A | A * S ……
n But … 6 * 6 ++ * 6, how does that parse?
n ((6 * 6)++) * 6 so …. S ::= M ++ * S as well
n S ::= A | A * S | M++ S
n A | M++ == possibly ++, not *

4/10/23 18

M ::= M * M | (M) | M ++ | 6

n * higher prec than ++, * assoc right
n 6 * 6 ++ * 6 ++ * 6

n M :: = M++
| S

n S ::= A
| A * S
| M++ * S

n Notice the doubling of rules for *

4/10/23 19

Programming Languages & Compilers

4/10/23 20

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Three Main Topics of the Course

Programming Languages & Compilers

4/10/23 21

I

New
Programming

Paradigm

II

Language
Translation

III

Language
Semantics

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

4/10/23 22

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

III : Language Semantics

Programming Languages & Compilers

4/10/23 23

Operational
Semantics

Lambda
Calculus

Axiomatic
Semantics

CS422 CS426
CS477

Order of Evaluation

Specification to Implementation
4/10/23 24

Semantics

n Expresses the meaning of syntax
n Static semantics

n Meaning based only on the form of the
expression without executing it

n Usually restricted to type checking / type
inference

4/10/23 25

Dynamic semantics

n Method of describing meaning of
executing a program

n Several different types:
n Operational Semantics
n Axiomatic Semantics
n Denotational Semantics

4/10/23 26

Dynamic Semantics

n Different languages better suited
to different types of semantics

n Different types of semantics
serve different purposes

4/10/23 27

Operational Semantics

n Start with a simple notion of machine
n Describe how to execute (implement)

programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

n Meaning of program is how its execution
changes the state of the machine

n Useful as basis for implementations

4/10/23 28

Axiomatic Semantics

n Also called Floyd-Hoare Logic
n Based on formal logic (first order

predicate calculus)
n Axiomatic Semantics is a logical system

built from axioms and inference rules
n Mainly suited to simple imperative

programming languages

4/10/23 29

Axiomatic Semantics

n Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assuming
another property (pre-condition) of the
state before execution

n Written :
{Precondition} Program {Postcondition}

n Source of idea of loop invariant

4/10/23 30

Denotational Semantics

n Construct a function M assigning a
mathematical meaning to each program
construct

n Lambda calculus often used as the range
of the meaning function

n Meaning function is compositional:
meaning of construct built from meaning
of parts

n Useful for proving properties of programs

4/10/23 31

1450 minutes

