Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

3/30/23


https://courses.engr.illinois.edu/cs421/sp2023

i BNF Deriviations

= Given rules
X:ii=yZwand Z ::=v
we may replace Z by vto say
X=>yZw=>yvw
= Sequence of such replacements called
derivation

= Derivation called right-most if always
replace the right-most non-terminal

3/30/23



i BNF Semantics

= The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

3/30/23 3



i BNF Derivations

= Start with the start symbol:

<Sum> =>

3/30/23



i BNF Derivations

= Pick a non-terminal

<Sum> =>

3/30/23



i BNF Derivations

s Pick a rule and substitute:
s <Sum> = <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

3/30/23



i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >

3/30/23



i BNF Derivations

= Pick a rule and substitute:
s <Sum> ::= ( <Sum> )
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>

3/30/23



i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>

3/30/23



i BNF Derivations

= Pick a rule and substitute:
= <SumMm> ;1= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>

3/30/23

10



i BNF Derivations

= Pick a non-terminal:
<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>

3/30/23

11



i BNF Derivations

= Pick a rule and substitute:
= <Sum >::=1
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>

3/30/23

12



i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>

3/30/23

13



i BNF Derivations

= Pick a rule and substitute:
s <Sum >::=0
<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum>+1)+0

3/30/23

14



i BNF Derivations

= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum>+1)+0

3/30/23

15



i BNF Derivations

= Pick a rule and substitute
= <Sum> ;=0

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum> +1)0
=>(0+1)+0

3/30/23

16



i BNF Derivations

= (0+ 1)+ 0 isgenerated by grammar

<Sum> => <Sum> + <Sum >
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1) + <Sum>
=>(<Sum>+1)+0
=>(0+1)+0

3/30/23

17



i Extended BNF Grammars

= Alternatives: allow rules of from X::=y | 7
= Abbreviates X::= y, Xi:=~

= Options: X::=y[v] ~z
= Abbreviates X::=y vz Xii=y 7

= Repetition: X::=y{v}* 2
= Can be eliminated by adding new

nonterminal V and rules X::=y z X::=yV 2z
Vii=y, Vii=vV

3/30/23 19



i Parse Trees

= Graphical representation of derivation

s Each node labeled with either non-terminal
or terminal

= If node is labeled with a terminal, then it is a
leaf (no sub-trees)

= If node is labeled with a non-terminal, then
it has one branch for each character in the

right-hand side of rule used to substitute for
it

3/30/23 20



i Example

= Consider grammar:

<exp> ::= <factor>
| <factor> + <factor>
<factor> ::= <bin>

| <bin> * <exp>
<bin>::= 0 |1

= Problem: Build parse tree for 1 *1 + 0 as
an <exp>

3/30/23

21



i Example cont.

=1 *1+0: <exp>

<exp> is the start symbol for this parse
tree

3/30/23

22



i Example cont.

el *1+0:;:

<exp>
|

<factor>

Use rule: <exp> ::=

3/30/23

<factor>

23



i Example cont.

= 1*1+0:; <e>ip>
<factor>
_— |
<bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

3/30/23

24



i Example cont.

=1 *1+0: <exp>

<factor>

<b|n‘/ <eX|>\

Use rules: <bin> :
<exp> :

<factor>

3/30/23

e
<factor>

=1 and

<factor>

= <factor> +

25



i Example cont.

= 1*1+0:; <e>ip>
<factor>
/I
<b|in> * /<Iexp>
1 <fac|tor> +

<bin>

Use rule: <factor> ::= <bin>

3/30/23

< ac,itor>

<bin>

26



i Example cont.

=1*1+0: <e>ip>

<factor>
/I
<bin> * <exp>
I rd
1 <fac|tor> + < ac,itor>
<b|in> <b|in>
1 0

Use rules: <bin>::=1]0

3/30/23 27



i Example cont.

=1*1+0: <e>ip>

<factor>
/I
<bin> * <exp>
I ]
1 <fac|tor> + < ac,itor>
<b|in> <bi|?>
1 0

Fringe of tree is string generated by grammar

3/30/23



iYourTurn:1*0+O*1

m <exp>
. A

m <fact> + <fact>

- [N/ | \

m <b> * <e><b> * <e>

3/30/23

29



i Parse Tree Data Structures

= Parse trees may be represented by OCaml
datatypes

= One datatype for each nonterminal
= One constructor for each rule

= Defined as mutually recursive collection of
datatype declarations

3/30/23

31



i Example

= Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin>| <bin> * <exp>
<bin>::= 0 |1
= type exp = Factor2Exp of factor
| Plus of factor * factor
and factor = Bin2Factor of bin
| Mult of bin * exp
and bin = Zero | One

3/30/23 32



i Example cont.

=1*1+0: <e>ip>

<factor>
/I
<bin> * <exp>
I rd
1 <fac|tor> + < ac,itor>
<bin> <bin>

| |
1 0

3/30/23 33



i Example cont.

= Can be represented as

Factor2Exp
(Mult(One,
Plus(Bin2Factor One,
Bin2Factor Zero)))

3/30/23

34



i Ambiguous Grammars and Languages

= A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

= If all BNF’ s for a language are ambiguous
then the language is /nherently ambiguous

3/30/23 35



i Example: Ambiguous Grammar

s0+1+0

<Sum> <Sum>

ﬁl\Sum> <Sum{ <\Sum>
I I
<Sur( <Sum> 0 <SU|4+ <Sum>

I |
O 1 1 0

3/30/23

36



i Example

= What is the result for:
3+4*5+6

3/30/23

37



i Example

= What is the result for:
3+4*5+6

= Possible answers:
s 41 =(3+4)*5+6
= 47=3+4*(5+6))
s 29=03+(4*5)+6=3+((4*5)+6)
= /7=3+4)*(5+6)

3/30/23

38



i Example

= What is the value of:
/—5-2

3/30/23

39



i Example

What is the value of:
/—5-2
Possible answers:
In Pascal, C++, SML assoc. left
/-5-2=(7-5-2=0
In APL, associate to right
/—-5-2=7-(5-2)=4

3/30/23

40



i Two Major Sources of Ambiguity

= Lack of determination of operator
precedence

= Lack of determination of operator
assoclativity

= Not the only sources of ambiguity

3/30/23 41



