
3/30/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

3/30/23 2

BNF Deriviations

n Given rules
X ::=y Zw and Z ::=v

we may replace Z by v to say
X => y Zw => y v w

n Sequence of such replacements called
derivation

n Derivation called right-most if always
replace the right-most non-terminal

3/30/23 3

BNF Semantics

n The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

3/30/23 4

BNF Derivations

n Start with the start symbol:

<Sum> =>

3/30/23 5

BNF Derivations

n Pick a non-terminal

<Sum> =>

3/30/23 6

n Pick a rule and substitute:
n <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

3/30/23 7

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

3/30/23 8

n Pick a rule and substitute:
n <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

BNF Derivations

3/30/23 9

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

BNF Derivations

3/30/23 10

n Pick a rule and substitute:
n <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

3/30/23 11

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

3/30/23 12

n Pick a rule and substitute:
n <Sum >::= 1

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

BNF Derivations

3/30/23 13

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

BNF Derivations

3/30/23 14

n Pick a rule and substitute:
n <Sum >::= 0

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0

BNF Derivations

3/30/23 15

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0

BNF Derivations

3/30/23 16

n Pick a rule and substitute
n <Sum> ::= 0

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) 0
=> (0 + 1) + 0

BNF Derivations

3/30/23 17

n (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0
=> (0 + 1) + 0

BNF Derivations

3/30/23 19

Extended BNF Grammars

n Alternatives: allow rules of from X::=y | z
n Abbreviates X::= y, X::= z

n Options: X::=y [v] z
n Abbreviates X::=y v z, X::=y z

n Repetition: X::=y {v }* z
n Can be eliminated by adding new

nonterminal V and rules X::=y z, X::=y V z,
V::=v, V::=v V

3/30/23 20

n Graphical representation of derivation
n Each node labeled with either non-terminal

or terminal
n If node is labeled with a terminal, then it is a

leaf (no sub-trees)
n If node is labeled with a non-terminal, then

it has one branch for each character in the
right-hand side of rule used to substitute for
it

Parse Trees

3/30/23 21

Example

n Consider grammar:
<exp> ::= <factor>

| <factor> + <factor>
<factor> ::= <bin>

| <bin> * <exp>
<bin> ::= 0 | 1

n Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

3/30/23 22

Example cont.

n 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
tree

3/30/23 23

Example cont.

n 1 * 1 + 0: <exp>

<factor>

Use rule: <exp> ::= <factor>

3/30/23 24

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

3/30/23 25

Example cont.

n 1 * 1 + 0: <exp>
<factor>

<bin> * <exp>
1 <factor> + <factor>

Use rules: <bin> ::= 1 and
<exp> ::= <factor> +

<factor>

3/30/23 26

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

Use rule: <factor> ::= <bin>
3/30/23 27

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

1 0
Use rules: <bin> ::= 1 | 0

3/30/23 28

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

1 0
Fringe of tree is string generated by grammar

3/30/23 29

Your Turn: 1 * 0 + 0 * 1

n <exp>
n / | \
n <fact> + <fact>
n / | \ / | \
n * <e> * <e>

3/30/23 31

Parse Tree Data Structures

n Parse trees may be represented by OCaml
datatypes

n One datatype for each nonterminal
n One constructor for each rule
n Defined as mutually recursive collection of

datatype declarations

3/30/23 32

Example

n Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

n type exp = Factor2Exp of factor
| Plus of factor * factor

and factor = Bin2Factor of bin
| Mult of bin * exp

and bin = Zero | One

3/30/23 33

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

1 0

3/30/23 34

Example cont.

n Can be represented as

Factor2Exp
(Mult(One,

Plus(Bin2Factor One,
Bin2Factor Zero)))

3/30/23 35

Ambiguous Grammars and Languages

n A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

n If all BNF’s for a language are ambiguous
then the language is inherently ambiguous

3/30/23 36

Example: Ambiguous Grammar

n 0 + 1 + 0
<Sum> <Sum>

<Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

0 1 1 0

3/30/23 37

Example

n What is the result for:
3 + 4 * 5 + 6

3/30/23 38

Example

n What is the result for:
3 + 4 * 5 + 6

n Possible answers:
n 41 = ((3 + 4) * 5) + 6
n 47 = 3 + (4 * (5 + 6))
n 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
n 77 = (3 + 4) * (5 + 6)

3/30/23 39

Example

n What is the value of:
7 – 5 – 2

3/30/23 40

Example

n What is the value of:
7 – 5 – 2

n Possible answers:
n In Pascal, C++, SML assoc. left

7 – 5 – 2 = (7 – 5) – 2 = 0
n In APL, associate to right

7 – 5 – 2 = 7 – (5 – 2) = 4

3/30/23 41

Two Major Sources of Ambiguity

n Lack of determination of operator
precedence

n Lack of determination of operator
associativity

n Not the only sources of ambiguity

