
3/30/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

EOH!

n Engineering Open House is Friday and
Saturday

n They are taking this room

n On Friday only, we will meet in Zoom only:
n Zoom Info:Meeting Id: 838 6324 1301

Passcode: cs421
URL: https://illinois.zoom.us/j/83863241301?pwd=
U2dtRm9RUmhVQUw4d3dFOVJxNHY4UT09

3/30/23 2

https://illinois.zoom.us/j/83863241301?pwd=U2dtRm9RUmhVQUw4d3dFOVJxNHY4UT09

3/30/23 3

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

3/30/23 4

Example : test.mll

rule main = parse
(digits)'.'digits as f { Float (float_of_string f) }

| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
print_newline ();
main newlexbuf }

3/30/23 5

Example

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->

result = <fun>
hi there 234 5.2
- : result = String "hi”

What happened to the rest?!?

3/30/23 6

Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

3/30/23 8

Problem

n How to get lexer to look at more than the
first token at one time?

n Answer: action has to tell it to -- recursive
calls
n Not what you want to sew this together with

ocamlyacc
n Side Benefit: can add “state” into lexing
n Note: already used this with the _ case

3/30/23 9

Example

rule main = parse
(digits) '.' digits as f { Float
(float_of_string f) :: main lexbuf}

| digits as n { Int (int_of_string n) ::
main lexbuf }

| letters as s { String s :: main
lexbuf}

| eof { [] }
| _ { main lexbuf }

3/30/23 10

Example Results

hi there 234 5.2
- : result list = [String "hi"; String "there"; Int

234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

3/30/23 11

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse

(digits) '.' digits as f { Float (float_of_string
f) :: main lexbuf}

| digits as n { Int (int_of_string n) ::
main lexbuf }

| letters as s { String s :: main lexbuf}

3/30/23 12

Dealing with comments

| open_comment { comment lexbuf}
| eof { [] }
| _ { main lexbuf }

and comment = parse
close_comment { main lexbuf }

| _ { comment lexbuf }

3/30/23 13

Dealing with nested comments

rule main = parse …
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
and comment depth = parse

open_comment { comment (depth+1) lexbuf
}

| close_comment { if depth = 1
then main lexbuf
else comment (depth - 1) lexbuf }

| _ { comment depth lexbuf }

3/30/23 14

Dealing with nested comments

rule main = parse
(digits) '.' digits as f { Float (float_of_string f) ::
main lexbuf}

| digits as n { Int (int_of_string n) :: main
lexbuf }

| letters as s { String s :: main lexbuf}
| open_comment { (comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }

3/30/23 15

Dealing with nested comments

and comment depth = parse
open_comment { comment (depth+1) lexbuf
}

| close_comment { if depth = 1
then main lexbuf
else comment (depth - 1) lexbuf }

| _ { comment depth lexbuf }

3/30/23 17

Types of Formal Language Descriptions

n Regular expressions, regular grammars
n Context-free grammars, BNF grammars,

syntax diagrams

n Finite state automata
n Pushdown automata
n Whole family more of grammars and

automata – covered in automata theory

3/30/23 18

BNF Grammars

n Start with a set of characters, a,b,c,…
n We call these terminals

n Add a set of different characters,
X,Y,Z,…
n We call these nonterminals

n One special nonterminal S called start
symbol

3/30/23 19

Sample Grammar

n Language: Parenthesized sums of 0’s and
1’s

n <Sum> ::= 0
n <Sum >::= 1
n <Sum> ::= <Sum> + <Sum>
n <Sum> ::= (<Sum>)

3/30/23 20

BNF Grammars

n BNF rules (aka productions) have form
X ::= y

where X is any nonterminal and y is a string
of terminals and nonterminals

n BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of
some rule

3/30/23 21

Sample Grammar

n Terminals: 0 1 + ()
n Nonterminals: <Sum>
n Start symbol = <Sum>
n <Sum> ::= 0
n <Sum >::= 1
n <Sum> ::= <Sum> + <Sum>
n <Sum> ::= (<Sum>)
n Can be abbreviated as
<Sum> ::= 0 | 1

| <Sum> + <Sum> | (<Sum>)

3/30/23 22

BNF Deriviations

n Given rules
X ::=y Zw and Z ::=v

we may replace Z by v to say
X => y Zw => y v w

n Sequence of such replacements called
derivation

n Derivation called right-most if always
replace the right-most non-terminal

3/30/23 23

BNF Semantics

n The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

3/30/23 24

BNF Derivations

n Start with the start symbol:

<Sum> =>

3/30/23 25

BNF Derivations

n Pick a non-terminal

<Sum> =>

3/30/23 26

n Pick a rule and substitute:
n <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

3/30/23 27

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

3/30/23 28

n Pick a rule and substitute:
n <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

BNF Derivations

3/30/23 29

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

BNF Derivations

3/30/23 30

n Pick a rule and substitute:
n <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

3/30/23 31

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

3/30/23 32

n Pick a rule and substitute:
n <Sum >::= 1

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

BNF Derivations

3/30/23 33

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>

BNF Derivations

3/30/23 34

n Pick a rule and substitute:
n <Sum >::= 0

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0

BNF Derivations

3/30/23 35

n Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0

BNF Derivations

3/30/23 36

n Pick a rule and substitute
n <Sum> ::= 0

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) 0
=> (0 + 1) + 0

BNF Derivations

3/30/23 37

n (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (<Sum> + 1) + 0
=> (0 + 1) + 0

BNF Derivations

3/30/23 39

Extended BNF Grammars

n Alternatives: allow rules of from X::=y | z
n Abbreviates X::= y, X::= z

n Options: X::=y [v] z
n Abbreviates X::=y v z, X::=y z

n Repetition: X::=y {v }* z
n Can be eliminated by adding new

nonterminal V and rules X::=y z, X::=y V z,
V::=v, V::=v V

3/30/23 40

n Graphical representation of derivation
n Each node labeled with either non-terminal

or terminal
n If node is labeled with a terminal, then it is a

leaf (no sub-trees)
n If node is labeled with a non-terminal, then

it has one branch for each character in the
right-hand side of rule used to substitute for
it

Parse Trees

3/30/23 41

Example

n Consider grammar:
<exp> ::= <factor>

| <factor> + <factor>
<factor> ::= <bin>

| <bin> * <exp>
<bin> ::= 0 | 1

n Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

3/30/23 42

Example cont.

n 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
tree

3/30/23 43

Example cont.

n 1 * 1 + 0: <exp>

<factor>

Use rule: <exp> ::= <factor>

3/30/23 44

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

3/30/23 45

Example cont.

n 1 * 1 + 0: <exp>
<factor>

<bin> * <exp>
1 <factor> + <factor>

Use rules: <bin> ::= 1 and
<exp> ::= <factor> +

<factor>

3/30/23 46

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

Use rule: <factor> ::= <bin>

3/30/23 47

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

1 0
Use rules: <bin> ::= 1 | 0

3/30/23 48

Example cont.

n 1 * 1 + 0: <exp>

<factor>
<bin> * <exp>

1 <factor> + <factor>
<bin> <bin>

1 0
Fringe of tree is string generated by grammar

3/30/23 49

Your Turn: 1 * 0 + 0 * 1

n <exp>
n / | \
n <fact> + <fact>
n / | \ / | \
n * <e> * <e>

