Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

Simple Implementation Background

```
type term = Variable of string
              | Const of (string * term list)
let x = Variable "a";; let tm = Const ("2",[]);;
let rec subst var_name residue term =
  match term with Variable name ->
       if var name = name then residue else term
     | Const (c, tys) ->
       Const (c, List.map (subst var name residue)
                          tys);;
```


Unification Problem

Given a set of pairs of terms ("equations")

$$\{(s_1, t_1), (s_2, t_2), ..., (s_n, t_n)\}$$

(the *unification problem*) does there exist a substitution σ (the *unification solution*) of terms for variables such that

$$\sigma(s_i) = \sigma(t_i),$$

for all i = 1, ..., n?

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming Prolog
- Simple parsing

4

Unification Algorithm

Let $S = \{(s_1 = t_1), (s_2 = t_2), ..., (s_n = t_n)\}$ be a unification problem.

Case S = { }: Unif(S) = Identity function (i.e., no substitution)

• Case $S = \{(s, t)\} \cup S'$: Four main steps

Unification Algorithm

- Delete: if s = t (they are the same term) then Unif(S) = Unif(S')
- Decompose: if $s = f(q_1, ..., q_m)$ and $t = g(r_1, ..., r_n)$ if f = g, m = n, then Unif(S) = Unif($\{(q_1, r_1), ..., (q_m, r_m)\} \cup S'$) else fail!
- Orient: if t = x is a variable, and s is not a variable, Unif(S) = Unif ({(x = s)} ∪ S')

4

Unification Algorithm

- Eliminate: if s = x is a variable, then if x does not occur in t (the occurs check), then
 - Let $\varphi = \{x \rightarrow t\}$
 - Unif(S) = Unif(ϕ (S')) o {x \rightarrow t}
 - Let $\psi = Unif(\phi(S'))$
 - Unif(S) = $\{x \rightarrow \psi(t)\}\ o\ \psi$
 - Note: $\{x \rightarrow a\}$ o $\{y \rightarrow b\}$ = $\{y \rightarrow (\{x \rightarrow a\}(b))\}$ o $\{x \rightarrow a\}$ if y not in a

else fail (because of occurs check failure)

Tricks for Efficient Unification

- Don't return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won't discuss these

x,y,z variables, f,g constructors

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- S = {(f(x) = f(g(f(z),y))), (g(y,y) = x)} is nonempty

■ Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = x)

• Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y)) = x
- Orient: (x = g(y,y))
- Unify {(f(x) = f(g(f(z),y))), (g(y,y) = x)} = Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))}
 by Orient

x,y,z variables, f,g constructors

• Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- {(f(x) = f(g(f(z),y))), (x = g(y,y))} is nonempty

■ Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))

■ Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in g(y,y)
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} = ?$

3/8/23

- x,y,z variables, f,g constructors
- Pick a pair: (x = g(y,y))
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$

Unify {(f(x) = f(g(f(z),y))), (x = g(y,y))} =
Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)}

x,y,z variables, f,g constructors

■ Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$ o $\{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- $\{(f(g(y,y)) = f(g(f(z),y)))\}\$ is non-empty

Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))

Unify {(f(g(y,y)) = f(g(f(z),y)))}
o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose:(f(g(y,y)) = f(g(f(z),y))) becomes {(g(y,y) = g(f(z),y))}

Unify {(f(g(y,y)) = f(g(f(z),y)))}
 o {x→ g(y,y)} =
 Unify {(g(y,y) = g(f(z),y))} o {x→ g(y,y)}

- x,y,z variables, f,g constructors
- $\{(g(y,y) = g(f(z),y))\}\$ is non-empty

Unify {(g(y,y) = g(f(z),y))} o {x→ g(y,y)} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (g(y,y) = g(f(z),y))

■ Unify $\{(g(y,y) = g(f(z),y))\}$ o $\{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose: (g(y,y)) = g(f(z),y)) becomes $\{(y = f(z)); (y = y)\}$
- Unify $\{(g(y,y) = g(f(z),y))\}\ o \{x \rightarrow g(y,y)\} =$ Unify $\{(y = f(z)); (y = y)\}\ o \{x \rightarrow g(y,y)\}$

x,y,z variables, f,g constructors

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

3/8/23

- x,y,z variables, f,g constructors
- {(y = f(z)); (y = y)} o {x→ g(y,y) is nonempty

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

3/8/23

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))

■ Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y,y)\} = ?$

- x,y,z variables, f,g constructors
- Pick a pair: (y = f(z))
- Eliminate y with $\{y \rightarrow f(z)\}$

```
Unify {(y = f(z)); (y = y)} o {x→ g(y,y)} = Unify {(f(z) = f(z))}
o ({y → f(z)} o {x→ g(y,y)})=
Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))}
```

x,y,z variables, f,g constructors

- x,y,z variables, f,g constructors
- $\{(f(z) = f(z))\}$ is non-empty

Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))

Unify {(f(z) = f(z))}
o {y → f(z); x→ g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- Pick a pair: (f(z) = f(z))
- Delete
- Unify {(f(z) = f(z))}
 o {y → f(z); x→ g(f(z), f(z))} =
 Unify {} o {y → f(z); x→ g(f(z), f(z))}

x,y,z variables, f,g constructors

■ Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = ?

- x,y,z variables, f,g constructors
- {} is empty
- Unify {} = identity function
- Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))} = {y \rightarrow f(z); x \rightarrow g(f(z), f(z))}

■ Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

$$f(x) = f(g(f(z), y))$$

$$\rightarrow f(g(f(z), f(z))) = f(g(f(z), f(z)))$$

$$g(y, y) = x$$

$$\rightarrow g(f(z),f(z)) = g(f(z), f(z))$$

4

Example of Failure: Decompose

- Unify $\{(f(x,g(y)) = f(h(y),x))\}$
- Decompose: (f(x,g(y)) = f(h(y),x))
- \blacksquare = Unify {(x = h(y)), (g(y) = x)}
- Orient: (g(y) = x)
- \blacksquare = Unify {(x = h(y)), (x = g(y))}
- Eliminate: (x = h(y))
- Unify $\{(h(y) = g(y))\}\ o \{x \to h(y)\}$
- Decompose only rule in this case, but Decompose fails!

4

Example of Failure: Occurs Check

- Unify $\{(f(x,g(x)) = f(h(x),x))\}$
- Decompose: (f(x,g(x)) = f(h(x),x))
- \blacksquare = Unify {(x = h(x)), (g(x) = x)}
- Orient: (g(x) = x)
- \blacksquare = Unify {(x = h(x)), (x = g(x))}
- Eliminate only rule that applies in this case, but Eliminate fails because the occurs check fails.