Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

3/3/23

https://courses.engr.illinois.edu/cs421/sp2023

i Example

= Which rule do we apply?

?

{} |- (letrecone =1 ::onein
letx = 2 in
funy->(x::y:rone)):int—int
list

3/3/23

i Example

= Let rec rule: @ {one : int list} |-

© (let x = 2 in

{one : int list} |- funy -> (X 1y :: one))
(1::0ne):intlist . int — int list
{} |- (letrecone =1 ::onein

let Xx = 2 in

funy-> (X ::y::one)):int — intlist

3/3/23 3

i Proof of 1

= Which rule?

{one : int list} |- (1 :: one) : int list

3/3/23

i Proof of 1

= Binary Operator

® @

{one : int list} |- {one : int list} |-
1:int one : int list

{one : int list} |- (1 :: one) : int list

where (::) : int — int list — int list

3/3/23

i Proof of 1

© @

Constant Rule Variable Rule
{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list

3/3/23

i Proof of 2

= Let Rule {x:int; one : int list} |-
funy ->
(X :1y ::one))
{one : int list} |- 2:int : int — int list

{one : intlist} |- (letx = 2 in
funy-> (x::y::one)):int — int list

3/3/23 8

i Proof of 2

@ {x:int; one : int list} |-

= Constant funy ->
(X :1y ::one))
{one : int list} |- 2:int : int — int list

{one : intlist} |- (letx = 2 in
funy-> (x::y::one)):int — int list

3/3/23 9

i Proof of 5

?

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

3/3/23

10

i Proof of 5

?

{y:int; x:int; one : int list} |- (X :: y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list
By the Fun Rule

3/3/23 11

i Proof of 5

® @

? ?

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- X:int |- (y :: one) : int list

qy:int; xtint; one :int list} |- (x ;1 y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

By BinOp where (::) : int — int list — int list

3/3/23 12

i Proof of 6

® @

Variable Rule ?
{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- X:int |- (y :: one) : int list

qy:int; xtint; one :int list} |- (x ;1 y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

3/3/23 13

i Proof of 7

= Binary Operation Rule

?

? {...; one:int list;...}

{y:int; ...} |- y:int - one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

By BinOp where (::) : int — int list — int list

3/3/23 14

i Proof of 7
Variable Rule

Variable Rule {...; one:int list;...}

{y:int; ...} |- y:int - one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

3/3/23 15

i Curry - Howard Isomorphism

= Type Systems are logics; logics are type
systems

= [ypes are propositions; propositions are
types

= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

3/3/23

17

i Curry - Howard Isomorphism

= Modus Ponens
A=B A
B

. Application
r-g:a->p I'l-6:«a

[-(e6):p

3/3/23

18

i Mea Culpa

= The above system can’ t handle polymorphism as
in OCAML

= No type variables in type language (only meta-
variables in the logic)

= Would need:

= Object level type variables and some kind of
type quantification

= let and let rec rules to introduce polymorphism

= EXxplicit changes to rules to eliminate
(instantiate) polymorphism

3/3/23 20

i Support for Polymorphic Types

= Monomorpic Types (1):
= Basic Types: int, bool, float, string, unit, ...
= Type Variables: o, B, v, 9, €
= Compound Types: o — B, int * string, bool list, ...
= Polymorphic Types:
=« Monomorphic types t
= Universally quantified monomorphic types
s Vo, ... ,0p.T
= Canthink of tassame as V. t

3/3/23 21

i Support for Polymorphic Types

Typing Environment I" supplies polymorphic types
(which will often just be monomorphic) for
variables

Free variables of monomorphic type just type
variables that occur in it

=« Write FreeVars(t)

Free variables of polymorphic type removes
variables that are universally quantified

« FreeVars(Voy, ..., o, .) = FreeVars(t) — {o4, ..., o, }
FreeVars(I') = all FreeVars of types in range of I

3/3/23 22

i Example FreeVars Calculations

= Vars(a -> (int->'b) ->'a) = {'a, 'b}
= FreeVars (All 'b. ‘a -> (int -> 'b) -> 'a) =
{'a, b} —-{b}={a}
s FreeVars {x : All '‘b. 'a -> (int -> 'b) -> '3,
id: All '‘c. 'c -> ',
v: All'‘c.'a->'b->"'c} =

tay U3 U{a, b} =1{a b}

3/3/23

23

