
3/3/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

3/3/23 2

Example

n Which rule do we apply?

?
{} |- (let rec one = 1 :: one in

let x = 2 in
fun y -> (x :: y :: one)) : int ® int

list

3/3/23 3

Example

n Let rec rule: 2 {one : int list} |-
1 (let x = 2 in

{one : int list} |- fun y -> (x :: y :: one))
(1 :: one) : int list : int ® int list
{} |- (let rec one = 1 :: one in

let x = 2 in
fun y -> (x :: y :: one)) : int ® int list

3/3/23 4

Proof of 1

n Which rule?

{one : int list} |- (1 :: one) : int list

3/3/23 5

Proof of 1

n Binary Operator

3 4
{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list

where (::) : int ® int list ® int list
3/3/23 6

Proof of 1

3 4
Constant Rule Variable Rule

{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list

3/3/23 8

Proof of 2

n Let Rule {x:int; one : int list} |-
fun y ->

(x :: y :: one))
{one : int list} |- 2:int : int ® int list

{one : int list} |- (let x = 2 in
fun y -> (x :: y :: one)) : int ® int list

3/3/23 9

Proof of 2

5 {x:int; one : int list} |-
n Constant fun y ->

(x :: y :: one))
{one : int list} |- 2:int : int ® int list

{one : int list} |- (let x = 2 in
fun y -> (x :: y :: one)) : int ® int list

3/3/23 10

Proof of 5

?
{x:int; one : int list} |- fun y -> (x :: y :: one))

: int ® int list

3/3/23 11

Proof of 5

?
{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))
: int ® int list

By the Fun Rule

3/3/23 12

Proof of 5

6 7
? ?

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- x:int |- (y :: one) : int list
{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))
: int ® int list

By BinOp where (::) : int ® int list ® int list
3/3/23 13

Proof of 6

6 7
Variable Rule ?

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- x:int |- (y :: one) : int list
{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))
: int ® int list

3/3/23 14

Proof of 7

n Binary Operation Rule
?

? {…; one:int list;…}
{y:int; …} |- y:int |- one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

By BinOp where (::) : int ® int list ® int list

3/3/23 15

Proof of 7

Variable Rule
Variable Rule {…; one:int list;…}

{y:int; …} |- y:int |- one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

3/3/23 17

Curry - Howard Isomorphism

n Type Systems are logics; logics are type
systems

n Types are propositions; propositions are
types

n Terms are proofs; proofs are terms

n Function space arrow corresponds to
implication; application corresponds to
modus ponens

3/3/23 18

Curry - Howard Isomorphism

n Modus Ponens
A Þ B A

B

• Application
G |- e1 : a ® b G |- e2 : a

G |- (e1 e2) : b

3/3/23 20

Mea Culpa

n The above system can’t handle polymorphism as
in OCAML

n No type variables in type language (only meta-
variables in the logic)

n Would need:
n Object level type variables and some kind of

type quantification
n let and let rec rules to introduce polymorphism
n Explicit changes to rules to eliminate

(instantiate) polymorphism

Support for Polymorphic Types

n Monomorpic Types (t):
n Basic Types: int, bool, float, string, unit, …
n Type Variables: a, b, g, d, e
n Compound Types: a ® b, int * string, bool list, …

n Polymorphic Types:
n Monomorphic types t
n Universally quantified monomorphic types
n a1, … , an . t
n Can think of t as same as . t

3/3/23 21

A
A

Support for Polymorphic Types

n Typing Environment G supplies polymorphic types
(which will often just be monomorphic) for
variables

n Free variables of monomorphic type just type
variables that occur in it
n Write FreeVars(t)

n Free variables of polymorphic type removes
variables that are universally quantified
n FreeVars(a1, … , an . t) = FreeVars(t) – {a1, … , an }

n FreeVars(G) = all FreeVars of types in range of G

3/3/23 22

A

Example FreeVars Calculations

n Vars(‘a -> (int -> ‘b) -> ‘a) = {‘a , ‘b}
n FreeVars (All ‘b. ‘a -> (int -> ‘b) -> ‘a) =

{‘a , ‘b} – {‘b} = {‘a}
n FreeVars {x : All ‘b. ‘a -> (int -> ‘b) -> ‘a,

id: All ‘c. ‘c -> ‘c,
y: All ‘c. ‘a -> ‘b -> ‘c} =

{‘a} U {} U {‘a, ‘b} = {‘a, ‘b}

3/3/23 23

