
3/3/23 1

Programming Languages and 
Compilers (CS 421)
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https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated 
by Vikram Adve and Gul Agha
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Example

n Which rule do we apply?

?
{} |- (let rec one = 1 :: one in 

let x = 2 in
fun y -> (x :: y :: one) ) : int ® int 

list
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Example

n Let rec rule:      2   {one : int list} |-
1 (let x = 2 in

{one : int list} |- fun y -> (x :: y :: one))
(1 :: one) : int list          : int ® int list
{} |- (let rec one = 1 :: one in 

let x = 2 in
fun y -> (x :: y :: one) ) : int ® int list
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Proof of 1

n Which rule?

{one : int list} |- (1 :: one) : int list
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Proof of 1

n Binary Operator

3                                           4
{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list

where ( :: ) : int ® int list ® int list
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Proof of 1

3                                4
Constant Rule             Variable Rule                     

{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list
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Proof of 2

n Let Rule                    {x:int; one : int list} |-
fun y ->

(x :: y :: one))
{one : int list} |- 2:int       : int ® int list

{one : int list} |- (let x = 2 in
fun y -> (x :: y :: one)) : int ® int list
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Proof of 2

5    {x:int; one : int list} |-
n Constant                    fun y ->

(x :: y :: one))
{one : int list} |- 2:int       : int ® int list

{one : int list} |- (let x = 2 in
fun y -> (x :: y :: one)) : int ® int list
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Proof of 5

?
{x:int; one : int list} |- fun y -> (x :: y :: one))

: int ® int list
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Proof of 5

?
{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))
: int ® int list

By the Fun Rule
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Proof of 5

6                                        7          
?                                        ?

{y:int; x:int; one:int list}     {y:int; x:int; one:int list}
|- x:int |- (y :: one) : int list
{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))
: int ® int list

By BinOp where ( :: ) : int ® int list ® int list
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Proof of 6

6                                        7          
Variable Rule                           ?

{y:int; x:int; one:int list}     {y:int; x:int; one:int list}
|- x:int |- (y :: one) : int list
{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))
: int ® int list
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Proof of 7

n Binary Operation Rule
?

?                      {…; one:int list;…}
{y:int; …} |- y:int           |- one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

By BinOp where ( :: ) : int ® int list ® int list
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Proof of 7

Variable Rule
Variable Rule  {…; one:int list;…}

{y:int; …} |- y:int           |- one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list
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Curry - Howard Isomorphism

n Type Systems are logics; logics are type 
systems

n Types are propositions; propositions are 
types

n Terms are proofs; proofs are terms

n Function space arrow corresponds to 
implication; application corresponds to 
modus ponens 
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Curry - Howard Isomorphism

n Modus Ponens
A Þ B   A

B

• Application
G |- e1 : a ® b G |- e2  : a

G |- (e1 e2) : b
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Mea Culpa

n The above system can’t handle polymorphism as 
in OCAML

n No type variables in type language (only meta-
variables in the logic)

n Would need: 
n Object level type variables and some kind of 

type quantification
n let and let rec rules to introduce polymorphism
n Explicit changes to rules to eliminate 

(instantiate) polymorphism

Support for Polymorphic Types

n Monomorpic Types (t):
n Basic Types: int, bool, float, string, unit, …
n Type Variables: a, b, g, d, e
n Compound Types: a ® b, int * string, bool list, …

n Polymorphic Types:
n Monomorphic types t
n Universally quantified monomorphic types
n a1, … , an . t
n Can think of t as same as    . t
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Support for Polymorphic Types

n Typing Environment G supplies polymorphic types 
(which will often just be monomorphic) for 
variables

n Free variables of monomorphic type just type 
variables that occur in it
n Write FreeVars(t)

n Free variables of polymorphic type removes 
variables that are universally quantified
n FreeVars(  a1, … , an . t) = FreeVars(t) – {a1, … , an }

n FreeVars(G) = all FreeVars of types in range of G
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Example FreeVars Calculations

n Vars(‘a -> (int -> ‘b) -> ‘a) = {‘a , ‘b}
n FreeVars (All ‘b. ‘a -> (int -> ‘b) -> ‘a) =

{‘a , ‘b} – {‘b} = {‘a}
n FreeVars {x : All ‘b. ‘a -> (int -> ‘b) -> ‘a,

id: All ‘c. ‘c -> ‘c,
y: All ‘c. ‘a -> ‘b -> ‘c} =

{‘a} U {} U {‘a, ‘b} = {‘a, ‘b}
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