Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

2/22/23

https://courses.engr.illinois.edu/cs421/sp2023

Format of Type Judgments

i

= A

type judgement has the form
[|-exp:r
= [is a typing environment

= Supplies the types of variables (and function
names when function names are not variables)

« 'isasetoftheform{ x:ic, ...}
« For any xat most one o such that (x: o € I')

= eXp IS a program expression
= 1 iS a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows™)

2/22/23

i Axioms — Constants (Monomorphic)

[|- n:int (assuming nis an integer constant)

[" |- true : bool [" |- false : bool
= These rules are true with any typing

environment
= [, n are meta-variables

2/22/23 3

i Axioms — Variables (Monomorphic Rule)

Notation: LetI'(x) = o if X:c e
Note: if such o exits, its unique

Variable axiom:

'l-x:c fI'(X¥) =0

2/22/23

i Simple Rules — Arithmetic (Mono)

Primitive Binary operators (@ { +, -, *, ...}):
Cl-eity Tl-61 (@)t 1> 13
l-e®e6: 1
Special case: Relations (~<¢<, >, =, <=, >=1):
rl-e:7 I'-:t (~):it—> 1t — bool
rl-e ~ & :bool

For the moment, think t is int

2/22/23 5

i Example: {x:int} |-x + 2 = 3 :bool

What do we need to show first?

{x:int} |-x + 2 = 3 : bool

2/22/23

i Example: {x:int} |-x + 2 = 3 :bool

What do we need for the left side?

{X:int} |-x+ 2 :int {x:int} |- 3 :inéc_
IN
{x:int} |-x + 2 = 3 : bool

2/22/23 7

i Example: {x:int} |-x + 2 = 3 :bool

How to finish?

{x:int} |- x:int {x:int} |- 2:intBiln
{X:int} |[-x+ 2 :int {x:int} |- 3 :inéc_
{x:int} [-x + 2 = 3 : bool "

2/22/23 8

i Example: {x:int} |-x + 2 = 3 :bool

Complete Proof (type derivation)

Var Const
{x:int} |- x:int {x:int} |- 2:intBin Const
{X:int} |[-x+ 2 :int {x:int} |- 3 :int

Bin

{x:int} |-x + 2 = 3 : bool

2/22/23 9

i Simple Rules - Booleans

Connectives
['|-¢ :bool T |-6& :bool

I'|-e && & : bool

['|-¢ :bool T |-6& :bool

F\ e || & : bool

2/22/23

11

i Type Variables in Rules

s If then else rule:
I'[-e :bool T'|-6 :1 T'|-€5:7
[|- (if ¢ thene, else e;): T

= 7 iS a type variable (meta-variable)
= Can take any type at all

= All instances in a rule application must get
same type

= Then branch, else branch and if_then_else
must all have same type

2/22/23 12

i Example derivation: if-then-else-

s [= {x:int, int_of_float:float -> int, y:float}

r|-(funy->
y>3)x T |-x+2 T|-int of floaty
: bool :int :int

' |-if(funy->vy > 3)x
then x + 2
else int_of floaty : int

2/22/23 13

i Function Application

= Application rule:
rl-¢g:ity—->1v I'l-6:1
rl-(e &)

= If you have a function expression ¢, of
type t; — 1, applied to an argument
&, of type 14, the resulting expression
e, & has type 1,

2/22/23 14

i Example: Application

s [= {x:int, int_of_float:float -> int, y:float}

I'|-(funy->vy > 3)
. int -> bool ['|-x:int

|- (funy->vy > 3)x: bool

2/22/23 15

i Fun Rule

= Rules describe types, but also how the
environment I" may change

= Can only do what rule allows!
= fun rule:
{x:t }+T|-€:1
C|-funx->€:1 > 1

2/22/23 17

i Fun Examples

{y:int}+T|-y+ 3 :int
[|-funy->y+ 3 :int—int

{f :int > bool} + I" |-f 2 :: [true] : bool list
|- (funf->(f 2) :: [true])
. (int — bool) — bool list

2/22/23 18

i (Monomorphic) Let and Let Rec

= let rule:
F‘-é’]:’cl {X:T1}+F"62:T2
]-(letx=¢ine):

= let rec rule:
Xt +T|-eity {xt+T |- &

['|-(letrecx=¢ing): 1,

2/22/23 19

i Example

= Which rule do we apply?

?

{} |- (letrecone =1 ::onein
letx = 2 in
funy->(x::y:rone)):int—int
list

2/22/23

21

i Example

= Let rec rule: @ {one : int list} |-

© (let x = 2 in

{one : int list} |- funy -> (X 1y :: one))
(1::0ne):intlist . int — int list
{} |- (letrecone =1 ::onein

let Xx = 2 in

funy-> (X ::y::one)):int — intlist

2/22/23 22

i Proof of 1

= Which rule?

{one : int list} |- (1 :: one) : int list

2/22/23

23

i Proof of 1

= Binary Operator

® @

{one : int list} |- {one : int list} |-
1:int one : int list

{one : int list} |- (1 :: one) : int list

where (::) : int — int list — int list

2/22/23

24

i Proof of 1

© @

Constant Rule Variable Rule
{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list

2/22/23 25

i Proof of 2

= Let Rule {x:int; one : int list} |-
funy ->
(X :1y ::one))
{one : int list} |- 2:int : int — int list

{one : intlist} |- (letx = 2 in
funy-> (x::y::one)):int — int list

2/22/23 27

i Proof of 2

@ {x:int; one : int list} |-

= Constant funy ->
(X :1y ::one))
{one : int list} |- 2:int : int — int list

{one : intlist} |- (letx = 2 in
funy-> (x::y::one)):int — int list

2/22/23 28

i Proof of 5

?

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

2/22/23

29

i Proof of 5

?

{y:int; x:int; one : int list} |- (X :: y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list
By the Fun Rule

2/22/23 30

i Proof of 5

® @

? ?

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- X:int |- (y :: one) : int list

qy:int; x:tint; one :int list} |- (x :: y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

By BinOp where (::) : int — int list — int list

2/22/23 31

i Proof of 6

® @

Variable Rule ?
{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- X:int |- (y :: one) : int list

qy:int; xtint; one :int list} |- (x ;1 y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

2/22/23 32

i Proof of 7

= Binary Operation Rule

?

? {...; one:int list;...}

{y:int; ...} |- y:int - one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

By BinOp where (::) : int — int list — int list

2/22/23 33

i Proof of 7
Variable Rule

Variable Rule {...; one:int list;...}

{y:int; ...} |- y:int - one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

2/22/23 34

i Curry - Howard Isomorphism

= Type Systems are logics; logics are type
systems

= [ypes are propositions; propositions are
types

= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

2/22/23

36

i Curry - Howard Isomorphism

= Modus Ponens
A=B A
B

. Application
r-g:a->p I'l-6:«a

[-(e6):p

2/22/23

37

