Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Format of Type Judgments

A type judgement has the form

$$\Gamma$$
 |- exp : τ

- I is a typing environment
 - Supplies the types of variables (and function names when function names are not variables)
 - Γ is a set of the form $\{x:\sigma,\ldots\}$
 - For any x at most one σ such that $(x : \sigma \in \Gamma)$
- exp is a program expression
- \mathbf{r} is a type to be assigned to exp
- pronounced "turnstyle", or "entails" (or "satisfies" or, informally, "shows")

Axioms – Constants (Monomorphic)

 $\Gamma \mid -n : int$ (assuming *n* is an integer constant)

 Γ |- true : bool

 Γ |- false : bool

- These rules are true with any typing environment
- \blacksquare Γ , n are meta-variables

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$

Note: if such of exits, its unique

Variable axiom:

$$\Gamma \mid -x : \sigma$$
 if $\Gamma(x) = \sigma$

Simple Rules – Arithmetic (Mono)

Primitive Binary operators ($\oplus \in \{+, -, *, ...\}$):

$$\Gamma \mid -e_1:\tau_1 \qquad \Gamma \mid -e_2:\tau_2 \quad (\oplus):\tau_1 \to \tau_2 \to \tau_3 \\
\Gamma \mid -e_1 \oplus e_2:\tau_3$$

Special case: Relations (~∈ { < , > , =, <=, >= }):

$$\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau \quad (\sim) : \tau \rightarrow \tau \rightarrow \text{bool}$$

$$\Gamma \mid -e_1 \quad \sim \quad e_2 : \text{bool}$$

For the moment, think τ is int

Example: $\{x:int\} | -x + 2 = 3 : bool$

What do we need to show first?

$$\{x:int\} \mid -x + 2 = 3 : bool$$

Example: $\{x:int\} | -x + 2 = 3 :bool$

What do we need for the left side?

$$\{x : int\} \mid -x + 2 : int$$
 $\{x : int\} \mid -3 : int$ $\{x : int\} \mid -x + 2 = 3 : bool$

Example: $\{x:int\} | -x + 2 = 3 : bool$

How to finish?

```
\{x:int\} \mid -x:int \{x:int\} \mid -2:int\} \mid -x+2:int \{x:int\} \mid -x+2:int \{x:int\} \mid -x+2:int\} \mid -x+2=3:bool
```

Example: $\{x:int\} | -x + 2 = 3 : bool$

Complete Proof (type derivation)

Simple Rules - Booleans

Connectives

$$\Gamma \mid -e_1 : bool$$
 $\Gamma \mid -e_2 : bool$ $\Gamma \mid -e_1 & e_2 : bool$

$$\Gamma \mid -e_1 : bool$$
 $\Gamma \mid -e_2 : bool$ $\Gamma \mid -e_1 \mid e_2 : bool$

Type Variables in Rules

If_then_else rule:

```
\Gamma \mid -e_1 : bool \quad \Gamma \mid -e_2 : \tau \quad \Gamma \mid -e_3 : \tau
\Gamma \mid -(if e_1 then e_2 else e_3) : \tau
```

- \mathbf{r} is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Example derivation: if-then-else-

■ $\Gamma = \{x:int, int_of_float:float -> int, y:float\}$

```
\Gamma |- (fun y -> y > 3) x \Gamma |- x+2 \Gamma|- int_of_float y : bool : int : int
```

$$\Gamma$$
 |- if (fun y -> y > 3) x
then x + 2
else int_of_float y : int

Function Application

Application rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid -e_2 : \tau_1}{\Gamma \mid -(e_1 e_2) : \tau_2}$$

If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument e_2 of type τ_1 , the resulting expression $e_1 e_2$ has type τ_2

Example: Application

■ Γ = {x:int, int_of_float:float -> int, y:float}

$$\Gamma$$
 |- (fun y -> y > 3)
: int -> bool Γ |- x : int

 Γ |- (fun y -> y > 3) x : bool

Fun Rule

- Rules describe types, but also how the environment \(\Gamma\) may change
- Can only do what rule allows!
- fun rule:

$$\{x \colon \tau_1\} + \Gamma \mid -e \colon \tau_2$$

$$\Gamma \mid -\text{ fun } x -> e \colon \tau_1 \to \tau_2$$

Fun Examples

$$\{y : int \} + \Gamma \mid -y + 3 : int \}$$

 $\Gamma \mid -fun y -> y + 3 : int \rightarrow int \}$

(Monomorphic) Let and Let Rec

let rule:

$$\Gamma \mid -e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \mid -e_2 : \tau_2$$

$$\Gamma \mid -(\text{let } x = e_1 \text{ in } e_2) : \tau_2$$

let rec rule:

$$\{x: \tau_1\} + \Gamma \mid -e_1:\tau_1 \{x: \tau_1\} + \Gamma \mid -e_2:\tau_2$$

 $\Gamma \mid -(\text{let rec } x = e_1 \text{ in } e_2):\tau_2$

Example

Which rule do we apply?

```
{} |- (let rec one = 1 :: one in let x = 2 in fun y \rightarrow (x :: y :: one)) : int \rightarrow int list
```

Example

```
(2) {one : int list} |-
Let rec rule:
                             (let x = 2 in
                         fun y -> (x :: y :: one))
{one : int list} |-
(1 :: one) : int list
                             : int \rightarrow int list
{} |- (let rec one = 1 :: one in
     let x = 2 in
      fun y -> (x :: y :: one)) : int \rightarrow int list
```

Which rule?

{one : int list} |- (1 :: one) : int list

Binary Operator

where $(::): int \rightarrow int list \rightarrow int list$

```
Constant Rule
Variable Rule
{one : int list} |-

1: int

One : int list

one : int list
```

2/22/23

{one : int list} |- (1 :: one) : int list

750 minutes

Constant

```
{x:int; one : int list} |-
                                fun y ->
                                  (x :: y :: one))
\{one : int list\} \mid -2:int : int \rightarrow int list\}
   {one : int list} |-| (let x = 2 in
      fun y -> (x :: y :: one)) : int \rightarrow int list
```

?

```
{x:int; one : int list} |- fun y -> (x :: y :: one))
: int \rightarrow int list
```

```
?
```

```
{y:int; x:int; one : int list} |- (x :: y :: one) : int list 
{x:int; one : int list} |- fun y -> (x :: y :: one)) 
: int \rightarrow int list 
By the Fun Rule
```

```
{y:int; x:int; one:int list}
{y:int; x:int; one:int list}
                                     |- (y :: one) : int list
  - x:int
{y:int; x:int; one : int list} |- (x :: y :: one) : int list
    \{x:int; one : int list\} | -fun y -> (x :: y :: one) \}
                                  : int \rightarrow int list
By BinOp where ( :: ) : int \rightarrow int list \rightarrow int list
```

Proof of 6

```
Variable Rule
                                  {y:int; x:int; one:int list}
{y:int; x:int; one:int list}
                                    |- (y :: one) : int list
  - x:int
{y:int; x:int; one : int list} |- (x :: y :: one) : int list
    \{x:int; one : int list\} | -fun y -> (x :: y :: one) \}
                                 : int \rightarrow int list
```

Binary Operation Rule

By BinOp where (::): int \rightarrow int list \rightarrow int list

```
Variable Rule
```

```
Variable Rule {...; one:int list;...}
```

```
{y:int; ...} |- y:int |- one : int list
```

```
{y:int; x:int; one : int list}|- (y :: one) : int list
```


Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms

 Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

Modus Ponens

$$\frac{\mathsf{A} \Rightarrow \mathsf{B} \quad \mathsf{A}}{\mathsf{B}}$$

Application

$$\Gamma \mid -e_1 : \alpha \to \beta \quad \Gamma \mid -e_2 : \alpha$$

$$\Gamma \mid -(e_1 e_2) : \beta$$