Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https.//courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

2/22/23

https://courses.engr.illinois.edu/cs421/sp2023

i Why Data Types?

= Data types play a key role in:
s Data abstraction in the design of programs
» Type checking in the analysis of programs

s« Compile-time code generation in the
translation and execution of programs

« Data layout (how many words; which are data
and which are pointers) dictated by type

2/22/23 2

i Terminology

= Type: A type tdefines a set of possible
data values

= E.g. short in Cis {x| 21>-12>x>-21>}
= A value in this set is said to have type ¢

= Type system: rules of a language
assigning types to expressions

2/22/23 3

i Types as Specifications

= Types describe properties

= Different type systems describe different
properties, eg

« Data is read-write versus read-only

=« Operation has authority to access data

= Data came from “right” source

=« Operation might or could not raise an exception

= Common type systems focus on types describing
same data layout and access methods

2/22/23 4

i Sound Type System

= If an expression is assigned type ¢, and it
evaluates to a value v, then vis in the set of
values defined by ¢

= SML, OCAML, Scheme and Ada have sound
type systems

= Most implementations of C and C++ do not

2/22/23 6

i Strongly Typed Language

= When no application of an operator to
arguments can lead to a run-time type
error, language is strongly typed

« Eg: 1+ 2.3;;
= Depends on definition of “type error”

2/22/23 7

i Strongly Typed Language

= C++ claimed to be “strongly typed”, but
= Union types allow creating a value at one
type and using it at another
= Type coercions may cause unexpected
(undesirable) effects
= No array bounds check (in fact, no
runtime checks at all)

= SML, OCAML “strongly typed” but still must
do dynamic array bounds checks, runtime
type case analysis, and other checks

2/22/23 8

i Static vs Dynamic Types

. Static type. type assigned to an expression
at compile time

. Dynamic type: type assigned to a storage
location at run time

. Statically typed language: static type
assigned to every expression at compile time

. Dynamically typed language: type of an
expression determined at run time

2/22/23 9

i Type Checking

= When is op(argl,...,argn) allowed?

s [ype checking assures that operations are
applied to the right number of arguments of
the right types

= Right type may mean same type as was
specified, or may mean that there is a
predefined implicit coercion that will be
applied
= Used to resolve overloaded operations

2/22/23 10

i Type Checking

= Type checking may be done statically at
compile time or dynamically at run time

= Dynamically typed (aka untyped)
languages (eg LISP, Prolog) do only
dynamic type checking

= Statically typed languages can do most
type checking statically

2/22/23 11

i Dynamic Type Checking

s Performed at run-time before each
operation is applied

= Types of variables and operations left
unspecified until run-time

= Same variable may be used at different
types

2/22/23

12

i Dynamic Type Checking

= Data object must contain type
information

= Errors aren’ t detected until violating
application is executed (maybe years
after the code was written)

2/22/23

13

i Static Type Checking

= Performed after parsing, before code
generation

= Type of every variable and signature of
every operator must be known at
compile time

2/22/23 14

i Static Type Checking

= Can eliminate need to store type
information in data object if no dynamic
type checking is needed

= Catches many programming errors at
earliest point

= Can’ t check types that depend on
dynamically computed values

=« Eg: array bounds

2/22/23 15

i Static Type Checking

= Typically places restrictions on
languages
= Garbage collection
= References instead of pointers
= All variables initialized when created

= Variable only used at one type

= Union types allow for work-arounds, but
effectively introduce dynamic type checks

2/22/23 16

i Type Inference

s /ype derivation : A formal proof that a
term has a type,
= assuming types for variables
= using the rules of a type system

s [ype checking : A program to analyze code

=« Confirms terms in the code have needed types
according to the type system

= Assures type derivations exist

2/22/23 18

i Type Declarations

s [ype declarations: explicit assignment
of types to variables (signatures to
functions) in the code of a program

= Must be checked in a strongly typed
language

= Often not necessary for strong typing or
even static typing (depends on the type
system)

2/22/23 19

i Type Inference

s /ype inference: A program analysis to
assign a type to an expression from the
program context of the expression

= Fully static type inference first introduced
by Robin Miller in ML

= Haskle, OCAML, SML all use type inference

= Records are a problem for type
inference

2/22/23 20

Format of Type Judgments

i

= A

type judgement has the form
[|-exp:r
= [is a typing environment

= Supplies the types of variables (and function
names when function names are not variables)

« 'isasetoftheform{ x:ic, ...}
« For any xat most one o such that (x: o € I')

= eXp IS a program expression
= 1 iS a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows™)

2/22/23 21

i Axioms — Constants (Monomorphic)

[|- n:int (assuming nis an integer constant)

[" |- true : bool [" |- false : bool
= These rules are true with any typing

environment
= [, n are meta-variables

2/22/23 22

i Axioms — Variables (Monomorphic Rule)

Notation: LetI'(x) = o if X:c e
Note: if such o exits, its unique

Variable axiom:

'l-x:c fI'(X¥) =0

2/22/23 23

i Simple Rules — Arithmetic (Mono)

Primitive Binary operators (@ { +, -, *, ...}):
Cl-eity Tl-61 (@)t 1> 13
l-e®e6: 1
Special case: Relations (~<¢<, >, =, <=, >=1):
rl-e:7 I'-:t (~):it—> 1t — bool
rl-e ~ & :bool

For the moment, think t is int

2/22/23 24

i Example: {x:int} |-x + 2 = 3 :bool

What do we need to show first?

{x:int} |-x + 2 = 3 : bool

2/22/23

25

i Example: {x:int} |-x + 2 = 3 :bool

What do we need for the left side?

{X:int} |-x+ 2 :int {x:int} |- 3 :inéc_
IN
{x:int} |-x + 2 = 3 : bool

2/22/23 26

i Example: {x:int} |-x + 2 = 3 :bool

How to finish?

{x:int} |- x:int {x:int} |- 2:intBiln
{X:int} |[-x+ 2 :int {x:int} |- 3 :inéc_
{x:int} [-x + 2 = 3 : bool "

2/22/23 27

i Example: {x:int} |-x + 2 = 3 :bool

Complete Proof (type derivation)

Var Const
{x:int} |- x:int {x:int} |- 2:intBin Const
{X:int} |[-x+ 2 :int {x:int} |- 3 :int

Bin

{x:int} |-x + 2 = 3 : bool

2/22/23 28

i Simple Rules - Booleans

Connectives
['|-¢ :bool T |-6& :bool

I'|-e && & : bool

['|-¢ :bool T |-6& :bool

F\ e || & : bool

2/22/23

30

i Type Variables in Rules

s If then else rule:
I'[-e :bool T'|-6 :1 T'|-€5:7
[|- (if ¢ thene, else e;): T

= 7 iS a type variable (meta-variable)
= Can take any type at all

= All instances in a rule application must get
same type

= Then branch, else branch and if_then_else
must all have same type

2/22/23 31

i Example derivation: if-then-else-

s [= {x:int, int_of_float:float -> int, y:float}

r|-(funy->
y>3)x T |-x+2 T|-int of floaty
: bool :int :int

' |-if(funy->vy > 3)x
then x + 2
else int_of floaty : int

2/22/23 32

i Function Application

= Application rule:
rl-¢g:ity—->1v I'l-6:1
rl-(e &)

= If you have a function expression ¢, of
type t; — 1, applied to an argument
&, of type 14, the resulting expression
e, & has type 1,

2/22/23 33

i Example: Application

s [= {x:int, int_of_float:float -> int, y:float}

I'|-(funy->vy > 3)
. int -> bool ['|-x:int

|- (funy->vy > 3)x: bool

2/22/23 34

i Fun Rule

= Rules describe types, but also how the
environment I" may change

= Can only do what rule allows!
= fun rule:
{x:t }+T|-€:1
C|-funx->€:1 > 1

2/22/23 36

i Fun Examples

{y:int}+T|-y+ 3 :int
[|-funy->y+ 3 :int—int

{f :int > bool} + I" |-f 2 :: [true] : bool list
|- (funf->(f 2) :: [true])
. (int — bool) — bool list

2/22/23 37

i (Monomorphic) Let and Let Rec

= let rule:
F‘-é’]:’cl {X:T1}+F"62:T2
]-(letx=¢ine):

= let rec rule:
Xt +T|-eity {xt+T |- &

['|-(letrecx=¢ing): 1,

2/22/23 38

i Example

= Which rule do we apply?

?

{} |- (letrecone =1 ::onein
letx = 2 in
funy->(x::y:rone)):int—int
list

2/22/23

39

i Example

= Let rec rule: @ {one : int list} |-

© (let x = 2 in

{one : int list} |- funy -> (X 1y :: one))
(1::0ne):intlist . int — int list
{} |- (letrecone =1 ::onein

let Xx = 2 in

funy-> (X ::y::one)):int — intlist

2/22/23 40

i Proof of 1

= Which rule?

{one : int list} |- (1 :: one) : int list

2/22/23

41

i Proof of 1

= Binary Operator

® @

{one : int list} |- {one : int list} |-
1:int one : int list

{one : int list} |- (1 :: one) : int list

where (::) : int — int list — int list

2/22/23

42

i Proof of 1

© @

Constant Rule Variable Rule
{one : int list} |- {one : int list} |-
1: int one : int list

{one : int list} |- (1 :: one) : int list

2/22/23 43

i Proof of 2

= Let Rule {x:int; one : int list} |-
funy ->
(X :1y ::one))
{one : int list} |- 2:int : int — int list

{one : intlist} |- (letx = 2 in
funy-> (x::y::one)):int — int list

2/22/23 45

i Proof of 2

@ {x:int; one : int list} |-

= Constant funy ->
(X :1y ::one))
{one : int list} |- 2:int : int — int list

{one : intlist} |- (letx = 2 in
funy-> (x::y::one)):int — int list

2/22/23 46

i Proof of 5

?

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

2/22/23

47

i Proof of 5

?

{y:int; x:int; one : int list} |- (X :: y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list
By the Fun Rule

2/22/23 48

i Proof of 5

(© @

? ?

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- X:int |- (y :: one) : int list

{y:int; x:int; one : intlist} [- (X 1y i one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

By BinOp where (::) : int — int list — int list

2/22/23 49

i Proof of 6

® @

Variable Rule ?
{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- X:int |- (y :: one) : int list

qy:int; xtint; one :int list} |- (x ;1 y :: one) : int list

{x:int; one : intlist} |-funy-> (x ::y :: one))
: int — int list

2/22/23 50

i Proof of 7

= Binary Operation Rule

?

? {...; one:int list;...}

{y:int; ...} |- y:int - one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

By BinOp where (::) : int — int list — int list

2/22/23 51

i Proof of 7
Variable Rule

Variable Rule {...; one:int list;...}

{y:int; ...} |- y:int - one : int list
{y:int; x:int; one : int list}|- (y :: one) : int list

2/22/23 52

i Curry - Howard Isomorphism

= Type Systems are logics; logics are type
systems

= [ypes are propositions; propositions are
types

= Terms are proofs; proofs are terms

= Function space arrow corresponds to
implication; application corresponds to
modus ponens

2/22/23

53

i Curry - Howard Isomorphism

= Modus Ponens
A=B A
B

. Application
r-g:a->p I'l-6:«a

[-(e6):p

2/22/23

54

