
2/16/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

2/16/23 2

Recursive Data Types

type exp =
VarExp of string

| ConstExp of const
| MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

2/16/23 3

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?

2/16/23 4

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?
nAnswer: ConstExp (IntConst 6)

2/16/23 5

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?

2/16/23 6

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?
nBinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3))

2/16/23 7

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …
nHow to represent [(6, 3)] as an exp?
nBinOpAppExp (ConsOp, BinOpAppExp (CommaOp,
ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

2/16/23 9

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

match t with Leaf n -> n
| Node(t1,t2) -> sum_tree t1 + sum_tree t2

2/16/23 10

2/16/23 11

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?

2/16/23 12

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

2/16/23 13

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> 1 + varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

2/16/23 15

Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) -> Leaf (f n)
| Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,

ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

2/16/23 16

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

2/16/23 17

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun left_tree)
(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

2/16/23 18

Folding over Recursive Types

let tree_sum =
ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

2/16/23 20

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList

and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a
treeList

and 'a treeList = Last of 'a tree | More of ('a
tree * 'a treeList)

2/16/23 21

Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,

(More (TreeNode
(More (TreeLeaf 3,

Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

2/16/23 22

Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More

(TreeLeaf 5,
More
(TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

2/16/23 23

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

2/16/23 24

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

2/16/23 25

Mutually Recursive Functions

let rec fringe tree =
match tree with (TreeLeaf x) -> [x]

| (TreeNode list) -> list_fringe list
and list_fringe tree_list =

match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

2/16/23 26

Mutually Recursive Functions

fringe tree;;
- : int list = [5; 3; 2; 7]

2/16/23 27

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

2/16/23 28

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ ->
| TreeNode ts ->

2/16/23 29

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

2/16/23 30

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =

2/16/23 31

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t ->
| More t ts’ ->

2/16/23 32

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

2/16/23 33

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

2/16/23 34

Nested Recursive Types

type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

2/16/23 35

Nested Recursive Type Values

let ltree =
TreeNode(5,

[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);
TreeNode (5, [])]);;

2/16/23 36

Nested Recursive Type Values

val ltree : int labeled_tree =
TreeNode
(5,
[TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])])

2/16/23 37

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

2/16/23 38

Nested Recursive Type Values

5

3 2 5

1 7

2/16/23 39

Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)

-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees

-> flatten_tree labtree
@ flatten_tree_list labtrees;;

2/16/23 40

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
n Nested recursive types lead to mutually

recursive functions

2/16/23 41

625 minutes

Extra Material

2/16/23 42

2/16/23 43

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
[1; 1; 1; 1; ...]

match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
match ones with x::_ -> x;;
^^^^^^^^^^^^^^^^^^^^^^^^^

- : int = 1

2/16/23 44

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
and tree_list = [lab_tree; lab_tree];;

val lab_tree : int labeled_tree =
TreeNode (2, [TreeNode(...); TreeNode(...)])

val tree_list : int labeled_tree list =
[TreeNode (2, [TreeNode(...);
TreeNode(...)]);
TreeNode (2, [TreeNode(...);
TreeNode(...)])]

2/16/23 45

Infinite Recursive Values

match lab_tree
with TreeNode (x, _) -> x;;

- : int = 2

2/16/23 46

Records

n Records serve the same programming
purpose as tuples

n Provide better documentation, more
readable code

n Allow components to be accessed by label
instead of position
n Labels (aka field names must be unique)
n Fields accessed by suffix dot notation

2/16/23 47

Record Types

n Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

n person is the type being introduced
n name, ss and age are the labels, or fields

2/16/23 48

Record Values

n Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
{name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

2/16/23 49

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

2/16/23 50

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119,

73, 6244)

2/16/23 51

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
{name = "Joseph Martins"; ss = (325, 40,
1276); age = 22}

student = teacher;;
- : bool = false

2/16/23 52

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

2/16/23 53

New Records from Old

let new_id name soc_sec person =
{person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person
-> person = <fun>

new_id "Guieseppe Martin" (523,04,6712)
student;;

- : person = {name = "Guieseppe Martin"; ss
= (523, 4, 6712); age = 22}

End of Extra Material

2/16/23 54

2/16/23 55

625 minutes

