
2/15/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

2/15/23 2

Variants - Syntax (slightly simplified)

n type name = C1 [of ty1] | . . . | Cn [of tyn]
n Introduce a type called name
n (fun x -> Ci x) : ty1 -> name
n Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
n Constructors are the basis of almost all

pattern matching

Data type in Ocaml: lists

n Frequently used lists in recursive program
n Matched over two structural cases

n [] - the empty list
n (x :: xs) a non-empty list

n Covers all possible lists
n type ‘a list = [] | (::) of ‘a * ‘a list

n Not quite legitimate declaration because of
special syntax

2/15/23 3

2/15/23 4

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

2/15/23 5

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

2/15/23 6

Functions over Enumerations

let day_after day = match day with
Monday -> Tuesday

| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>

2/15/23 7

Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0

then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday
= <fun>

2/15/23 8

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday |
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day =

2/15/23 9

Problem:

type weekday = Monday | Tuesday |
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day =

match day with Saturday -> true
| Sunday -> true
| _ -> false

2/15/23 10

2/15/23 11

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp
| SndOp

2/15/23 12

Disjoint Union Types

n Disjoint union of types, with some possibly
occurring more than once

n We can also add in some new singleton
elements

ty1 ty2 ty1

2/15/23 13

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

n Create a type to represent the currencies for
US, UK, Europe and Japan

2/15/23 14

Problem

n Create a type to represent the currencies for
US, UK, Europe and Japan

type currency =
Dollar of int

| Pound of int
| Euro of int
| Yen of int

2/15/23 15

2/15/23 16

Example Disjoint Union Type

type const =
BoolConst of bool

| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

2/15/23 17

Example Disjoint Union Type

type const = BoolConst of bool
| IntConst of int | FloatConst of float
| StringConst of string | NilConst
| UnitConst

nHow to represent 7 as a const?
nAnswer: IntConst 7

2/15/23 19

Polymorphism in Variants

n The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n Used to encode partial functions
n Often can replace the raising of an exception

2/15/23 20

Functions producing option

let rec first p list =
match list with [] -> None
| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

2/15/23 21

Functions over option

let result_ok r =
match r with None -> false
| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

Problem

n Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

2/15/23 22

Problem

n Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

n let hd list =
match list with [] -> None
| (x::xs) -> Some x

n let tl list =
match list with [] -> None
| (x::xs) -> Some xs

2/15/23 23

2/15/23 24

Mapping over Variants

let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap
(fun x -> x - 2)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

2/15/23 25

Folding over Variants

let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun x;;

val optionFold : ('a -> 'b) -> 'b -> 'a option ->
'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

2/15/23 26

Recursive Types

n The type being defined may be a component
of itself

ty ty’ ty

2/15/23 27

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

2/15/23 28

Recursive Data Type Values

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

2/15/23 29

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

2/15/23 30

Recursive Functions

let rec first_leaf_value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int =
<fun>

let left = first_leaf_value bin_tree;;
val left : int = 3

2/15/23 32

Recursive Data Types

type exp =
VarExp of string

| ConstExp of const
| MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

2/15/23 33

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?

2/15/23 34

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?
nAnswer: ConstExp (IntConst 6)

2/15/23 35

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?

2/15/23 36

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?
nBinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3))

2/15/23 37

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …
nHow to represent [(6, 3)] as an exp?
nBinOpAppExp (ConsOp, BinOpAppExp (CommaOp,
ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

2/15/23 39

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

match t with Leaf n -> n
| Node(t1,t2) -> sum_tree t1 + sum_tree t2

2/15/23 40

2/15/23 41

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?

2/15/23 42

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

2/15/23 43

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> 1 + varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

2/15/23 45

Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) -> Leaf (f n)
| Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,

ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

2/15/23 46

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

2/15/23 47

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun left_tree)
(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

2/15/23 48

Folding over Recursive Types

let tree_sum =
ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

