
2/9/23 1

Programming Languages and 
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated 
by Vikram Adve and Gul Agha

CPS for Higher Order Functions

n In CPS, every procedure / function takes a 
continuation to receive its result

n Procedures passed as arguments take 
continuations

n Procedures returned as results take 
continuations

n CPS version of higher-order functions must 
expect input procedures to take 
continuations

2/9/23 2

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?

2/9/23 3

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k =

2/9/23 4

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] ->     true

2/9/23 5

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] ->  k true

2/9/23 6



Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] ->  k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k 
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list -> 
(bool -> 'b) -> 'b = <fun>

2/9/23 7

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] ->  k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k 
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list -> 
(bool -> 'b) -> 'b = <fun>

2/9/23 8

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] ->  k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k 
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list -> 
(bool -> 'b) -> 'b = <fun>

2/9/23 9

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in 

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] ->  k true
| (x :: xs) -> pk x

(fun b -> if b then allk (pk, xs) k else k 
false)
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list -> 
(bool -> 'b) -> 'b = <fun>

2/9/23 10

2/9/23 11

Terminology: Review

n A function is in Direct Style when it returns its 
result back to the caller.

n A function is in Continuation Passing Style when it, 
and every function call in it, passes its result to 
another function. 

n A Tail Call occurs when a function returns the 
result of another function call without any more 
computations (eg tail recursion) 

n Instead of returning the result to the caller, we 
pass it forward to another function giving the 
computation after the call. 

2/9/23 12

CPS Transformation

n Step 1: Add continuation argument to any function 
definition:
n let f arg = e  Þ let f arg k = e
n Idea: Every function takes an extra parameter 

saying where the result goes
n Step 2: A simple expression in tail position should 

be passed to a continuation instead of returned:
n return a Þ k a
n Assuming a is a constant or variable.
n “Simple” = “No available function calls.”



2/9/23 13

CPS Transformation

n Step 3: Pass the current continuation to every 
function call in tail position
n return f arg Þ f arg k
n The function “isn’t going to return,” so we need 

to tell it where to put the result.

CPS Transformation

n Step 4: Each function call not in tail position needs 
to be converted to take a new continuation 
(containing the old continuation as appropriate)
n return op (f arg) Þ f arg (fun r -> k(op r))
n op represents a primitive operation

n return  g(f arg) Þ f arg (fun r-> g r k)

2/9/23 14

2/9/23 16

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

2/9/23 17

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

2/9/23 18

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

2/9/23 19

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)



2/9/23 20

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

2/9/23 21

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

2/9/23 22

Example

Before:
let rec mem (y,lst) =
match lst with
[ ] -> false

| x :: xs -> 
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [ ] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

2/9/23 23

Example

Before:
let rec add_list lst =
match lst with
[ ] -> 0

| 0 :: xs -> add_list xs
| x :: xs -> (+) x 

(add_list xs);;

After:
let rec add_listk lst k =

(* rule 1 *)
match lst with
| [ ] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k

(* rule 3 *)
| x :: xs -> add_listk xs

(fun r -> k ((+) x r));;
(* rule 4 *)

Extra Material

2/9/23 24

Other Uses for Continuations

n CPS designed to preserve  order of 
evaluation

n Continuations used to express order of 
evaluation

n Can be used to change order of evaluation
n Implements:

n Exceptions and exception handling
n Co-routines
n (pseudo, aka green) threads

2/9/23 25



2/9/23 26

Exceptions - Example

# exception Zero;;
exception Zero
# let rec list_mult_aux list = 

match list with [ ] -> 1
| x :: xs ->
if x = 0 then raise Zero 

else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

2/9/23 27

Exceptions - Example

# let list_mult list =
try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>
# list_mult [3;4;2];;
- : int = 24
# list_mult [7;4;0];;
- : int = 0
# list_mult_aux [7;4;0];;
Exception: Zero.

2/9/23 28

Exceptions

n When an exception is raised
n The current computation is aborted
n Control is “thrown” back up the call 
stack until a matching handler is 
found

n All the intermediate calls waiting for a 
return values are thrown away

2/9/23 29

Implementing Exceptions

# let multkp (m, n) k =
let r = m * n in
(print_string "product result: ";
print_int r; print_string "\n";
k r);;

val multkp : int ( int -> (int -> 'a) -> 'a = 
<fun>

2/9/23 30

Implementing Exceptions

# let rec list_multk_aux list k kexcp =
match list with [ ] -> k 1
| x :: xs -> if x = 0 then  kexcp  0
else list_multk_aux xs 

(fun r -> multkp (x, r) k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a) 

-> 'a = <fun>
# let rec list_multk list k = list_multk_aux list  k  k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

2/9/23 31

Implementing Exceptions

# list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
# list_multk [7;4;0] report;;
0
- : unit = ()



End of Extra Material

2/9/23 32

Data type in Ocaml: lists

n Frequently used lists in recursive program
n Matched over two structural cases

n [ ] - the empty list
n (x :: xs) a non-empty list

n Covers all possible lists
n type ‘a list = [ ] | (::) of ‘a * ‘a list

n Not quite legitimate declaration because of 
special syntax

2/9/23 34

2/9/23 35

Variants - Syntax (slightly simplified)

n type name = C1 [of ty1] | . . . | Cn [of tyn]
n Introduce a type called name
n (fun x -> Ci x) : ty1 -> name
n Ci is called a constructor; if the optional type 

argument is omitted, it is called a constant
n Constructors are the basis of almost all 

pattern matching

2/9/23 36

Enumeration Types as Variants

An enumeration type is a collection of distinct 
values

In C and Ocaml they have an order structure; 
order by order of input

2/9/23 37

Enumeration Types as Variants

# type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

2/9/23 38

Functions over Enumerations

# let day_after day = match day with
Monday -> Tuesday

| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>



2/9/23 39

Functions over Enumerations

# let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0

then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday 
= <fun>

2/9/23 40

Functions over Enumerations

# days_later 2 Tuesday;;
- : weekday = Thursday
# days_later (-1) Wednesday;;
- : weekday = Tuesday
# days_later (-4) Monday;;
- : weekday = Thursday

Problem:

# type weekday = Monday | Tuesday | 
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day = 

2/9/23 41

Problem:

# type weekday = Monday | Tuesday | 
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day = 

match day with Saturday -> true
| Sunday -> true
| _ -> false

2/9/23 42

2/9/23 43

Example Enumeration Types

# type bin_op = IntPlusOp | IntMinusOp 
| EqOp | CommaOp | ConsOp

# type mon_op = HdOp | TlOp | FstOp
| SndOp

2/9/23 44

Disjoint Union Types

n Disjoint union of types, with some possibly 
occurring more than once

n We can also add in some new singleton 
elements

ty1 ty2 ty1



2/9/23 45

Disjoint Union Types

# type id = DriversLicense of int                          
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity 
of int | Name of string

# let check_id id = match id with
DriversLicense num -> 
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

n Create a type to represent the currencies for 
US, UK, Europe and Japan

2/9/23 46

Problem

n Create a type to represent the currencies for 
US, UK, Europe and Japan

type currency =
Dollar of int

| Pound of int
| Euro of int
| Yen of int

2/9/23 47 2/9/23 48

Example Disjoint Union Type

# type const =
BoolConst of bool 

| IntConst of int
| FloatConst of float
| StringConst of string 
| NilConst
| UnitConst 

2/9/23 49

Example Disjoint Union Type

# type const = BoolConst of bool 
| IntConst of int | FloatConst of float
| StringConst of string  | NilConst
| UnitConst 

nHow to represent 7 as a const?
nAnswer:  IntConst 7

2/9/23 51

Polymorphism in Variants

n The type 'a option is gives us something to 
represent non-existence or failure

# type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n Used to encode partial functions
n Often can replace the raising of an exception



2/9/23 52

Functions producing option

# let rec first p list =
match list with [ ] -> None
| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>
# first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
# first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

2/9/23 53

Functions over option

# let result_ok r =
match r with None -> false
| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>
# result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
# result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

Problem

n Write a hd and tl on lists that doesn’t raise 
an exception and works at all types of lists.

2/9/23 54

Problem

n Write a hd and tl on lists that doesn’t raise 
an exception and works at all types of lists.

n let hd list = 
match list with [] -> None
| (x::xs) -> Some x

n let tl list = 
match list with [] -> None
| (x::xs) -> Some xs

2/9/23 55

2/9/23 56

Mapping over Variants

# let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b 
option = <fun>

# optionMap
(fun x -> x - 2)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

2/9/23 57

Folding over Variants

# let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun x;;

val optionFold : ('a -> 'b) -> 'b -> 'a option -> 
'b = <fun>

# let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b 
option = <fun>



2/9/23 58

Recursive Types

n The type being defined may be a component 
of itself

ty ty’ ty

2/9/23 59

Recursive Data Types

# type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of 
(int_Bin_Tree * int_Bin_Tree)

2/9/23 60

Recursive Data Type Values

# let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node 
(Leaf 3, Leaf 6), Leaf (-7))

2/9/23 61

Recursive Data Type Values

bin_tree =   Node

Node               Leaf (-7)

Leaf 3      Leaf 6

2/9/23 62

Recursive Functions

# let rec first_leaf_value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int = 
<fun>

# let left = first_leaf_value bin_tree;;
val left : int = 3


