Programming Languages and
Compilers (CS 421)

i

IElsa L Gunter
2112 SC, UIUC v

https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

2/8/23 1

‘ Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

= Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

2/8/23 3

‘ Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk (x, y) k = k(x - y);;

val subk : int * int -> (int -> 'a) -> 'a = <fun>

letegk (x, y) k = k(x =vy);;

val egk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>

let timesk (x, y) k = k(x * y);;

val timesk : int * int -> (int -> 'a) -> 'a = <fun>

2/8/23 4

‘ Nesting Continuations

let add_triple (x, ¥, 2) = (x + y) + z;;

val add_triple : int * int * int -> int = <fun>

let add_triple (x,y,z)=letp=x+yinp + z;;

val add_triple : int * int * int -> int = <fun>

let add_triple_k (x, y, z) k =
addk (x, y)|(fun p -> addk (p,) KI);;

val add_triple_k: int * int * int -> (int -> 'a) ->
'a = <fun>

2/8/23 5

‘ add_three: a different order

= # let add_triple (x, y, z) = x + (y + 2);;
= How do we write add_triple_k to use a
different order?

= let add_triple_k (x, y, z) k =

2/8/23 6

‘ add_three: a different order

= # let add_triple (x, y, z) = x + (y + 2);;
= How do we write add_triple_k to use a
different order?

» let add_triple_k (x, y, z) k =
addk (y,z) (fun r -> addk(x,r) k)

2/8/23 7

‘ add_three: a different order

» # let add_triple (x, ¥, z) = x + (y + 2);;
= How do we write add_triple_k to use a
different order?

» let add_triple_k (x, y, z) k =
addk (y,z)|(fun r -> addk(x,r) K)|

2/8/23 8

‘ add_three: a different order

n # let add_triple (x, ¥, 2) = x + (y + 2);;
= How do we write add_triple_k to use a
different order?

» let add_triple_k (x, y, z) k =
addk (y,z)|(fun r -> addk(x,r)[K)|

2/8/23 9

‘ Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120

2/8/23 10

‘ Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
else let s = n—1in (* Second computation *)
let r = factorial s in (* Third computation *)
n * r (* Returned value *) ;;
val factorial : int -> int = <fun>
factorial 5;;
-1int =120

2/8/23 11

Recursive Functions

let rec factorialk n k =
egk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)
val factorialk : int -> (int -> ‘a) -> ‘a = <fun>
factorialk 5 report;;
120
-:runit = ()

2/8/23 12

‘ Recursive Functions

= To make recursive call, must build
intermediate continuation to

= take recursive value: r

= build it to final result: n * r

= And pass it to final continuation:
« times(n,r)k=k(n*r)

2/8/23 13

Recursive Functions

let rec factorialk n k =
eqgk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)
val factorialk : int -> (int -> ‘a) -> ‘a = <fun>
factorialk 5 report;;
120
-:unit = ()

2/8/23 14

‘ Example: CPS for length

let rec length list = match list with [] -> 0
| (@::bs)->1+ length bs
What is the let-expanded version of this?

2/8/23 15

‘ Example: CPS for length

let rec length list = match list with []-> 0

| (@::bs)->1+ length bs
What is the let-expanded version of this?
let rec length list = match list with []-> 0

| (@::bs)->letrl =lengthbsin1+rl

2/8/23 17

‘ Example: CPS for length

#let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1+rl
What is the CSP version of this?

2/8/23 18

‘ Example: CPS for length

#let rec length list = match list with [] -> 0
| (@::bs)->letrl =lengthbsin1l+rl
What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0
| X :: xs -> lengthk xs (fun r -> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- unit = ()

2/8/23 19

‘ CPS for sum

let rec sum list = match list with []-> 0
| X 11 xs-> x4+ sum xs ;;
val sum : int list -> int = <fun>

2/8/23 20

‘ CPS for sum

let rec sum list = match list with []-> 0
| X 11 Xs-> X+ sum xs ;;

val sum : int list -> int = <fun>

let rec sum list = match list with []-> 0
| X ::xs->letrl = sumxs inx + rl;;

2/8/23

21

‘ CPS for sum

let rec sum list = match listwith []-> 0
| X 11 xs->x 4+ sum xs ;;
val sum : int list -> int = <fun>
let rec sum list = match listwith []-> 0
| x ::xs->letrl =sumxs inx+rl;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with []-> k 0
| X 11 xs->sumk xs (funrl -> addk x rl k);;

2/8/23 22

‘ CPS for sum

let rec sum list = match list with[]-> 0
| X 11 Xs-> X+ sumxs ;;
val sum : int list -> int = <fun>
let rec sum list = match list with[]-> 0
| x::xs->letrl =sumxs inx+rl;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with []-> k 0
| x :: xs -> sumk xs (fun rl -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20
-:unit=()

2/8/23

23

‘ CPS for Higher Order Functions

= In CPS, every procedure / function takes a
continuation to receive its result

= Procedures passed as arguments take
continuations

= Procedures returned as results take
continuations

= CPS version of higher-order functions must
expect input procedures to take
continuations

2/8/23 24

‘ Example: all

#let rec all (p, I) = match | with [] -> true
| (X::xs)->letb=pxin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?

2/8/23

25

‘ Example: all

#let rec all (p,) = match | with [] -> true
| (x::xs)->letb=pxin
if b then all (p, xs) else false
val all : (‘a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, I) k =

2/8/23 26

‘ Example: all

#let rec all (p,) = match | with [] -> true
| (x::xs)->letb=pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with []-> true

2/8/23 27

‘ Example: all

#let rec all (p,) = match | with [] -> true
| (x::xs)->letb=pxin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> Kk true

2/8/23 28

Example: all

#let rec all (p, I) = match | with [] -> true
| (x::xs)->letb=pxin
if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (X ::xs)->

2/8/23 29

Example: all

#let rec all (p, I) = match | with [] -> true
| (x::xs)->letb=pxin
if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (x::xs)->pkx

2/8/23 30

Example: all

#let rec all (p, 1) = match | with [] -> true
| (x::xs)->letb=pxin

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, 1) k = match | with [] -> k true
| (x ::xs)-> pk x

(fun b -> if b then else

2/8/23 31

Example: all

#let rec all (p, I) = match | with [] -> true
| (x::xs)->letb=pxin

if b then all (p, xs) else false
val all : ("a -> bool) -> 'a list -> bool = <fun>
= What is the CPS version of this?
#let rec allk (pk, I) k = match | with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk (pk, xs) k else k

false)
val allk : (‘a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

2/8/23 32

‘ Terminology: Review

= A function is in Direct Style when it returns its
result back to the caller.

= A function is in Continuation Passing Style when it,

and every function call in it, passes its result to
another function.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

= Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

2/8/23 33

‘ CPS Transformation

= Step 1: Add continuation argument to any function
definition:
sletfarg=e = letfargk=e

= Idea: Every function takes an extra parameter
saying where the result goes

= Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

= retuna=ka
= Assuming a is a constant or variable.
= “Simple” = “No available function calls.”

2/8/23 34

‘ CPS Transformation

= Step 3: Pass the current continuation to every
function call in tail position

= return farg = farg k

= The function “isn’ t going to return,” so we need
to tell it where to put the result.

2/8/23 35

‘ CPS Transformation

= Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

= return op (f arg) = f arg (fun r -> k(op r))
= Op represents a primitive operation

= return g(f arg) = f arg (fun r-> g r k)

2/8/23 36

‘ Example

Before: After:
let rec mem (y,Ist) = let rec memk (y,lst) k =
(*rule 1 %)
match Ist with
[]-> false
| X :i x5 ->
if (x=1y)
then true
else mem(y,xs);;

2/8/23 38

‘ Example

Before: IAfter: st K

_ let rec memk (y,lst) k =
let rec mem (y,Ist) = (* rule 1 %)
match Ist with

[]-> false k false (* rule 2 *)
| X 11 xs->

if(x=y)

then true k true (* rule 2 *)

else mem(y,xs);;

2/8/23 39

‘ Example

Before: After:
let rec mem (y,Ist) = 't 'éc memk (y’gt)n';ez 1
match Ist with
[]-> false
| X i xs->
if (x=y)
then true
else mem(y,xs);;

k false (* rule 2 *)

k true (* rule 2 *)
memk (y, xs) k (* rule 3 *)

2/8/23 40

‘ Example

Before: lAfte” < K
_ et rec memk (y,lIst) k =
let rec mem_ (y,Ist) = (* rule 1 %)
match Ist with
[]-> false k false (* rule 2 *)
| X i1 xs->)
; _ eqr (X, y
if (x=y) (funb-> b (* rule 4 %)
then true

k true (* rule 2 *)

else mem(y,xs);; memk (y, xs) (* rule 3 *)

2/8/23 41

‘ Example

Before: lAfte" K (0 K
_ let rec memk (y,lst) k =

let rec mem (y,Ist) = (* rule 1 %)
match Ist with

[]1-> false k false (* rule 2 *)
| X xS -> K (% y)

i egk (x, y

if (x =) (fun b ->if b (* rule 4 *)

then true

then k true (* rule 2 *)

else mem(y,xs);; else memk (y, xs) (* rule 3 *)

2/8/23 42

‘ Example

Before: lAfte" K (y,Jst) k

_ let rec memk (y,lst) k =
let rec mem (y/Ist) = (* rule 1 *)
match Ist with

match Ist with

[]1-> false | []-> kfalse (* rule 2 *)
| X 11 xs -> I x 2 xs ->

oy egk (x, y)

if(x=y) (fun b ->if b (* rule 4 *)

then true

then k true (* rule 2 *)

else mem(y,xs);; else memk (y, xs) k (* rule 3 *)

2/8/23 43

‘ Example

Before: IAfter: st K

_ let rec memk (y,lst) k =
let rec mem (y,Ist) = (* rule 1 %)
match Ist with

match Ist with

[]-> false | []-> k false (* rule 2 *)
| X 1 xS -> | X i1 xs ->

oo eqk (x, y)

if (x =) (fun b ->if b (* rule 4 *)

then true

then k true (* rule 2 *)

else mem(y,xs);; else memk (y, xs) k (* rule 3 *)

2/8/23 44

‘ Example

Before: After: _
let rec add_list Ist = let rec add_listk Ist k =

: (* rule 1 *)
match Ist with match Ist with

[1->0 [[]1->kO (*rule2¥*)
| 0 :: xs -> add_list xs | 0 ::xs->add_listk xs k
|X..Xs_> (+);(_(*rule3*)
3 . | x :: xs -> add_listk xs
(add_list xs);; (funr->k ((+) x1);;
(*rule 4 %)

2/8/23 45

