
2/12/23 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/sp2023

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

https://courses.engr.illinois.edu/cs421/sp2023

Your turn: num_neg – tail recursive

let num_neg list =

2/12/23 3

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

in num_neg_aux ? ?

2/12/23 4

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] ->
| (x :: xs) ->

in num_neg_aux ? ?

2/12/23 5

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

in num_neg_aux ? ?

2/12/23 6

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs ?

in num_neg_aux ? ?

2/12/23 7

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux ? ?

2/12/23 8

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list ?

2/12/23 9

Your turn: num_neg – tail recursive

let num_neg list =
let rec num_neg_aux list curr_neg =

match list with [] -> curr_neg
| (x :: xs) ->

num_neg_aux xs
(if x < 0 then 1 + curr_neg
else curr_neg)

in num_neg_aux list 0

2/12/23 10

Tail Recursion - length

n How can we write length with tail recursion?
let length list =

let rec length_aux list acc_length =
match list accumulated value
with [] -> acc_length

| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list 0
initial acc value combing operation

2/12/23 12

length, fold_left

let length list =
fold_left
(fun acc -> fun x -> 1 + acc) // comb op
0 // initial accumulator cell value
list

2/12/23 14

Your turn: num_neg, fold_left

let num_neg list =
fold_left
? // comb op

? // initial accumulator cell value
?

2/12/23 16

Your turn: num_neg, fold_left

let num_neg list =
fold_left
? // comb op

0 // initial accumulator cell value
?

2/12/23 17

Your turn: num_neg, fold_left

let num_neg list =
fold_left
(fun curr_neg -> fun x ->

if x < 0 then 1 + curr_neg else curr_neg)
// comb op

0 // initial accumulator cell value
?

2/12/23 18

Your turn: num_neg, fold_left

let num_neg list =
fold_left
(fun curr_neg -> fun x ->

if x < 0 then 1 + curr_neg else curr_neg)
// comb op

0 // initial accumulator cell value
list

2/12/23 19

2/12/23 29

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

2/12/23 30

Folding

n Can replace recursion by fold_right in any
forward primitive recursive definition
n Primitive recursive means here it only recurses

on immediate subcomponents of recursive data
structure

n Can replace recursion by fold_left in any tail
primitive recursive definition

2/12/23 46

Continuations

n A programming technique for all forms
of “non-local” control flow:
n non-local jumps
n exceptions
n general conversion of non-tail calls to tail

calls
n Essentially it’s a higher-order function

version of GOTO

2/12/23 47

Continuations

n Idea: Use functions to represent the control
flow of a program

n Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

n Function receiving the result called a
continuation

n Continuation acts as “accumulator” for work
still to be done

2/12/23 48

Continuation Passing Style

n Writing procedures such that all
procedure calls take a continuation to
which to give (pass) the result, and
return no result, is called continuation
passing style (CPS)

2/12/23 49

Continuation Passing Style

n A compilation technique to implement non-
local control flow, especially useful in
interpreters.

n A formalization of non-local control flow in
denotational semantics

n Possible intermediate state in compiling
functional code

Why CPS?

n Makes order of evaluation explicitly clear
n Allocates variables (to become registers) for each

step of computation
n Essentially converts functional programs into

imperative ones
n Major step for compiling to assembly or byte

code
n Tail recursion (and forward recursion) easily

identified

2/12/23 50

Other Uses for Continuations

n CPS designed to preserve order of
evaluation

n Continuations used to express order of
evaluation

n Can be used to change order of evaluation
n Implements:

n Exceptions and exception handling
n Co-routines
n (pseudo, aka green) threads

2/12/23 51

2/12/23 52

Example

n Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

n Simple function using a continuation:
let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> ’a) -> ’a = <fun>
addk (22, 20) report;;
42
- : unit = ()

Simple Functions Taking Continuations

n Given a primitive operation, can convert it to
pass its result forward to a continuation

n Examples:
let subk (x, y) k = k(x - y);;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
let eqk (x, y) k = k(x = y);;
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
let timesk (x, y) k = k(x * y);;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

2/12/23 53

Nesting Continuations

let add_triple (x, y, z) = (x + y) + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple (x,y,z)=let p = x + y in p + z;;
val add_triple : int * int * int -> int = <fun>
let add_triple_k (x, y, z) k =

addk (x, y) (fun p -> addk (p, z) k);;
val add_triple_k: int * int * int -> (int -> 'a) ->

'a = <fun>

2/12/23 54

add_three: a different order

n # let add_triple (x, y, z) = x + (y + z);;
n How do we write add_triple_k to use a

different order?

n let add_triple_k (x, y, z) k =

2/12/23 55

add_three: a different order

n # let add_triple (x, y, z) = x + (y + z);;
n How do we write add_triple_k to use a

different order?

n let add_triple_k (x, y, z) k =
addk (y,z) (fun r -> addk(x,r) k)

2/12/23 56

2/12/23 58

Recursive Functions

n Recall:
let rec factorial n =

if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
- : int = 120

2/12/23 59

Terms

n A function is in Direct Style when it returns its
result back to the caller.

n A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

n Instead of returning the result to the caller, we
pass it forward to another function giving the
computation after the call.

2/12/23 60

Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
else let s = n – 1 in (* Second computation *)

let r = factorial s in (* Third computation *)
n * r (* Returned value *) ;;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

2/12/23 61

Recursive Functions

let rec factorialk n k =
eqk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)

val factorialk : int -> (int -> ‘a) -> ‘a = <fun>
factorialk 5 report;;
120
- : unit = ()

2/12/23 63

Recursive Functions

n To make recursive call, must build
intermediate continuation to
n take recursive value: r
n build it to final result: n * r
n And pass it to final continuation:
n times (n, r) k = k (n * r)

2/12/23 64

Recursive Functions

let rec factorialk n k =
eqk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)

val factorialk : int -> (int -> ‘a) -> ‘a = <fun>
factorialk 5 report;;
120
- : unit = ()

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

2/12/23 65

